방향성 **Digital 3**상 과전류 & 지락 과전류 계전기 사용 설명서

Directional Digital 3-phase Overcurrent & Ground Overcurrent Relay Manual

TYPE : GD31-AB06

2006. 8. 21 Version 1.03

경 보 전 기 주 식 회 사

안전을 위한 주의사항

사용자의 안전과 재산상의 손해를 막기 위한 내용입니다. 반드시 사용 설명서를 주의 깊게 읽은 후 올바르게 사용하십시오. 사용 설명서는 제품을 사용하는 사람이 잘 볼 수 있는 곳에 보관하십시오.

경 고

주 의

지시사항을 지키지 않았을 경우, 사용자가 사망하거나 중상을 입을 수 있습니다 지시사항을 지키지 않았을 경우, 사용자의 부상이나 재산 피해가 발생할 수 있습니다

표시안내

금지 표시입니다

반드시 지켜야 할 사항이라는 표시입니다

경

 전원이 입력된 상태이거나 운전 중에는 배선작업을 하지 마십시오.

감전의 위험이 있습니다.

• 운전 시작 전 접지 단자의 연결 상태를 확인 하십시오 접지가 되어있지 않을 경우 감전, 파손 및 화재의 위험이 있습니다.

• 젖은 손으로 제품을 조작하지 마십시오. 감전의 위험이 있습니다.

• 케이블의 피복이 손상되어 있을 경우에는 사용하지 마십시오. 감전의 위험이 있습니다.

 모든 배선 작업은 모선이 활선 상태일 경우에는 하지 마십시오.

감전 및 변류기의 충전전압에 의해 파손 및 화재의 위험이 있습니다.

• 전원이 입력되지 않은 경우에도, 배선작업이나 정기 점검 이외에는 제품을 분해하지 마십시오.

제품 내부의 충전전류에 의해 감전의 위험이 있습니다.

• 배선, 시운전 및 유지 보수는 전기기술자가 하도록 하십시오. 함부로 조작할 경우 감전이나 화재의 위험이 있습니다.

• 케이블 결선을 할 경우 터미널 작업을 하십시오. 케이블의 나선 부분에 의한 감전의 위험이 있습니다.

• 배선 작업 후 뒷면 단자대의 단자 커버를 씌워주십시오. 감전의 위험이 있습니다.

주 의

- 0
- 제품의 전원 단자에 정격 전원을 인가하여 주십시오. 정격 전원을 사용하지 않을 경우 제품의 손상 및 화재의 위험이 있습니다.
- 입력 및 출력 접점의 정격 부하를 지켜 주십시오. 정격 부하를 사용하지 않을 경우 제품의 손상 및 화재의 위험이 있습니다.
- 제품 내부에는 나사, 금속물질, 물, 기름 등의 이물질이 들어가지 않게 하십시오.
 제품의 손상 및 화재의 위험이 있습니다.
- 제품을 직사광선에 노출되지 않게 하십시오.
- 수평상태에서 Case 인출 및 삽입을 하십시오. 수평이 아닌 상태에서 취급 할 경우 제품의 손상 위험이 있습니다.
 - 습기가 높고 먼지가 많은 곳에 보관하지 마십시오. 제품의 손상 위험이 있습니다.

	목 차
•	안전을 위한 주의사항
1.	개 요 (General Features)
2.	사 양 (Technical Data)
	2.1 입력 전압 / 전류 (Voltage / Current Input)
3.	보호 특성 (Protection Characteristics)
4.	3.1 방향성 3상 과전류 계전 기능 (Directional 3-Phase Overcurrent Function)
	4.1 계측 표시 기능 (Metering Function)
5.	전면부 표시 (Display Panel Construction)
	5.1 전면부 표시, 조작부의 구성 (Front-side Display Panel Structure)
6.	표시 및 정정 (Display & Setting Modes)
	6.1 Key 조작 및 LCD 구성

6.2 Display 화면 표시 방법 (Display Modes)	30
6.2.1 Status 화면	31
6.2.1.1 Status ▶ Contact Input 항목	31
6.2.1.2 Status ▶ Contact Output 항목	32
6.2.1.3 Status ▶ Self-Diagnosis 항목	33
6.2.1.4 Status ▶ Protection 항목	
6.2.2 Measure 화면	35
6.2.3 Event Record 화면	36
6.2.4 Waveform Record 화면	
6.2.5 System Info. 화면	
6.3 Setting 화면 표시 방법 (Setting Modes)	
6.3.1 System 설정	41
6.3.1.1 System ▶ Power System 설정	41
6.3.1.2 System ▶ T/S 설정	
6.3.1.3 System ▶ RTC 설정	55
6.3.1.4 System ▶ Waveform Record 설정	57
6.3.1.5 System ▶ COM 설정	60
6.3.1.6 System ▶ DNP 설정	
6.3.1.7 System ▶ Password 설정	
6.3.2 Protection 설정	
6.3.2.1 Protection ▶ IDOCR 설정	
6.3.2.2 Protection ▶ TDOCR 설정	
6.3.2.3 Protection ▶ IDGR 설정	
6.3.2.4 Protection ▶ TDGR 설정	
6.3.3 Command	
6.3.3.1 Command	
6.3.3.2 Command	
6.3.3.3 Command Contact OUT Test	
6.3.3.4 Command Panel Test	
0.5.5.4 Command	62
7. PC Software (Setting Tool, Waveform Evaluation Tool)	87
7.1 Setting Tool (G6R-Set)	87
7.1.1 프로그램 Menu(Program Menu)	88
7.1.2 보호 계전기 선택 (Device Selecting)	88
7.1.3 통신 Port 설정 (Communication Port Configuration)	
7.1.4 정정치 변경 화면	89
7.1.4.1 System Configuration	
7.1.4.2 Protection Setting	91
7.1.5 Event 화면	
7.1.6 Waveform 화면	
7.1.7 Monitor 화면	94
7.2 Fault Evaluation Tool (G6R-Eval)	95
7.2.1 기능 설명	
7.2.2 Meter	
7.2.3 Graph	
7.2.4 Harmonic List	 97
보드 1 이전 미 컨스 / Dimensioned Durwitzer)	00
부도 1. 외형 및 치수 (Dimensioned Drawings)	
부도 2. 내부 Block Diagram (Internal Block Diagram)	
부도 3. 외부 결선도 (External Connection)	
부도 4. 특성 곡선 (Characteristic Curve)	101
부록 A. 제품 출하 시 Setting 값	109
	10)

1. 개요 (General Features)

본 계전기는 DOCR×3, DOCGR×1의 계전요소를 동시에 내장하고 있어 송전선로, 배전선로 Feeder 및 고압 Feeder, 분산전원 연계선로 보호에 적합하게 적용될 수 있도록 설계 제작 된 Digital 연산형 계전기로 다양한 동작시간, 동작전류의 정정이용이할 뿐만 아니라 Fault 정보를 기록, 저장할 수 있어 전선로의 신뢰성을 향상시키는데 큰 도움이 되며 주요 특징은 아래와 같습니다.

특 징 (Features)

- 완전 연산형 3상 방향성 과전류 및 방향성 지락과전류 계전기
- 다양한 시간 특성의 구현 (8개의 시간 특성 내장)
- 출력 접점의 접점 유지시간은 0.00 ~ 200.00Sec (0.01Sec Step)로 가변설정가능
- 설정치 및 계측치의 LCD 화면을 통한 디지털 표시 (4 × 20 LCD 화면)
- 각종 Event (최대 512개) 및 사고 시 사고파형 기록 (최대 8개)
- 다양한 자기 진단 및 상시 감시 기능 구현을 통한 신뢰도 향상.
- 계전기 점검 시 외부 접점 입력에 의한 계전기 요소별 동작 저지
- 선로의 정격 주파수에 따라 자유로운 주파수 설정 가능 (50 / 60Hz)
- 8개의 Relay접점 출력 (T/S Output)을 각각 22개의 Mode로 설정 할 수 있으며 Alarm 및 SCADA용으로 모두 사용 가능
 - Trip용 접점(3c), Signal용 접점(4a, 1c)
- 계전기 이상 상태 발생 시 출력접점을 통해 동작 신뢰도 향상
- 편리한 PC Application
 - Setting Tool : 정정치 변경, Event 및 Fault Waveform 조회
 - Evaluation Tool : Fault Waveform 분석
- 계전기 내부 수동 Trip 지령을 통한 출력접점 Test 가능 (Contact Test)
- 정정치 변경 시 암호 입력을 통한 철저한 보안 유지
- 다양한 통신 지원
 - 통신방식 : RS-232C, RS485C (SCADA통신)
 - 지원 프로토콜 : ModBus, DNP3.0
- 다양한 전압/전류 계측기능 (각 상별 상/선간전압, 전류의 크기 및 위상,대칭분 전압/전류 계측, 각 상 유효 전력 계측, 3상 유효/무효/피상 전력 계측)
- EMC / EMI 성능 강화
- 적용 규격 : 한국 전력 공사 345kV 변압기 보호 배전반 구매시방서 (ES 158), KEMC-1120

2. 사 양 (Technical Data)

2.1 입력 전압/전류 (Voltage/Current Input)

정 격 전	압 (V _N)	AC 63.5/110/190V (Selection)
정 격 전 류 (I _N)		AC 5A
	전압 입력 회로	정격의 2배 연속, 3배 1초
과부하 내량	전류 입력 회로	연속 10A, 2초 100A, 1초 200A
	제어 전원 회로	정격 전압의 1.3배/3h
부	담	0.5VA 이하/Phase

2.2 정격 제어 전원 (Rated Control Source Voltage)

AC/DC 110 ~ 220V(free voltage)

2.3 정격 주파수 (Rated Frequency)

50Hz 또는 60Hz (Sine Waveform 정현파)

2.4 출력 접점 / 용량 (Output Contacts)

T / S1 ~ T / S3접점 (Trip contacts) 3c 접점			
정 격 전 압	AC 250V, DC 125V		
연 속 통 전 용 량	16A (AC 250V)		
0.5초 폐 로 용 량	30A (DC 125V)		
개 로 용량	DC 125V, 30W, 시정수(25ms), 1A		
차 단 용량	4000VA / 480W		
재 질	AgCdO		
T / S4 ~ T / S8 접점 (Signal contacts) 4a, 1c 접점			
정 격 전 압	AC 250V, DC 125V		
연 속 통 전 용 량	5A (AC 250V)		
0.5초 폐 로 용 량	5A (DC 125V)		
개 로 용량	DC 125V, 30W, 시정수(25ms), 1A		
차 단 용량	1250VA / 150W		
재 질	AgCdO		

2.5 입력 접점 동작 범위 (Input Contact Operating Range)

정격 제어 전원 전압	AC/DC 110 ~ 220V
폐로 접점 입력 시 통전 전류	10mA 이하

2.6 외 함 (Case)

외함 구조	매입 인출형
외함 Color	Munsell No. N1.5 (검정)
외함 재질	Fe (철)

2.7 방향성 한시 과전류 요소 (Directional Time Overcurrent)

전류 동작치	0.2 ~ 12.5A (0.1A Step)
전압 동작치	정격 전압의 3% 이상
방향 (Direction)	Disabled, Forward, Reverse
동작 시간 특성	반한시, 강반한시, 초반한시, 장반한시 경보유도형 (KEPCO 형) 반한시, KEPCO 형 방향성 반한시, 경보유도형 (KEPCO 형) 강반한시, 정한시
동작 시간 배율	0.05 ~ 10.00 (0.05 Step)
정한시 동작시간	0.03 ~ 60.00Sec (0.01Sec Step)
최대 감도 위상각 (MTA)	-90° ~ +90° (1° Step)
Volt Loss Block	Disabled, Enabled
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ±5% 이내

2.8 방향성 순시 과전류 요소 (Directional Instantaneous Overcurrent)

전류 동작치	1.0 ~ 100A (0.5A Step)
전압 동작치	정격 전압의 3% 이상
방향 (Direction)	Disabled, Forward, Reverse
동작 시간 특성	순시 (≤15ms), 정한시
정한시 동작시간	0.03 ~ 60.00Sec (0.01Sec Step)
최대 감도 위상각 (MTA)	-90° ~ +90° (1° Step)
Volt Loss Block	Disabled, Enabled
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ±5% 이내

2.9 방향성 한시 지락 과전류 요소 (Directional Time Ground Overcurrent)

전류 동작치	0.1 ~ 5.0A (0.1A Step)
전압 동작치	5 ~ 50V (1V Step)
방향 (Direction)	Disabled, Forward, Reverse
극성 (Polarity)	Voltage, Current, Dual
동작 시간 특성	반한시, 강반한시, 초반한시, 장반한시 경보유도형 (KEPCO 형) 반한시, KEPCO 형 방향성 반한시, 경보유도형 (KEPCO 형) 강반한시, 정한시
동작 시간 배율	0.05 ~ 10.00 (0.05 Step)
정한시 동작시간	0.03 ~ 60.00Sec (0.01Sec Step)
최대 감도 위상각 (MTA)	-90° ~ +90° (1° Step)
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ±5% 이내

2.10 순시 지락 과전류 요소 (Directional Instantaneous Ground Overcurrent)

전류 동작치	0.5 ~ 50A (0.1A Step)
전압 동작치	5 ~ 50V (1V Step)
방향 (Direction)	Disabled, Forward, Reverse
극성 (Polarity)	Voltage, Current, Dual
동작 시간 특성	순시 (≤15ms), 정한시
정한시 동작시간	0.03 ~ 60.00Sec (0.01Sec Step)
최대 감도 위상각 (MTA)	-90° ~ +90° (1° Step)
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ±5% 이내

2.11 절 연 (Insulation Test)

절연 저항	10MΩ 이상, 500 Vdc	IEC60255-5
상용 주파 내전압	2kV, 50/60Hz, 1min	IEC60255-5
뇌 임펄스 내전압	5kV, 1.2×50μs, 정·부극성, 3회	IEC60255-5

주의) 계전기 내부에 서지 보호회로가 내장되어 있으므로 내전압 시험 시에는 반드시 FG(24, 52번) 단자를 OPEN 시키고 하십시오.

2.12 진동, 충격 (Mechanical Tests)

진	땅	Vibration Response Test	10 ~ 150Hz, 0.5G, 전후, 좌우, 상하 1회
		Vibration Endurance Test	10 ~ 150Hz, 1G, 전후, 좌우, 상하 20회
		Shock Response Test	5G, 전후, 좌우, 상하 3회
충	격	Shock Withstand Test	15G, 전후, 좌우, 상하 3회
		Bump Test	10G, 전후, 좌우, 상하 1000회

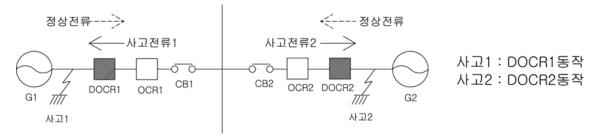
2.13 내 노이즈 (Noise Test)

1MHz burst disturbance	2.5kV, 1MHz, 75	IEC60255-22-1	
EFE D4	인가 전압	WG(0255.22.4	
EFT Burst	반복 주파수	2.5kHz	IEC60255-22-4
	Air discharge	IEC60255-22-2	
Electrostatic Discharge	Contact discharge		
Surge Electrical Disturbance	2.0kV, 1.2×50μs, 8	IEC60255-22-5	
무선주파 방사내력	80MHz ~ 1GHz	IEC60255-22-3	
무선주파 전도내성	150kHz ~ 80MH	IEC60255-22-6	

2.14 온도, 습도 (Temperature, Humidity Test)

온 도 범 위	동작 주위 온도	-10°C ~ +55°C		
_	복원 보증 온도	-20℃ ~ +60℃		
상 대 습	도	일평균 30% ~ 90%		

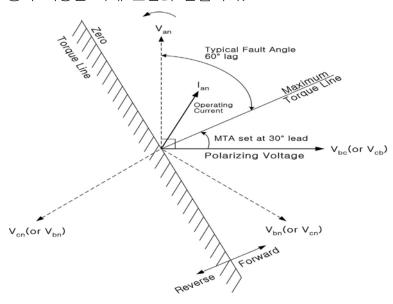
2.15 기타 사용 환경 (Other Operating Condition)


ж 2	1000m 이하
이상 진동, 충격, 경사 및 기	자계의 영향이 없는 상태
폭발성 분진, 가연성 분진,	가연성 / 부식성 가스, 염분 등이 없는 곳

3. 보호 특성 (Protection Characteristics)

3.1 방향성 과전류 계전 기능 (Directional 3-Phase Overcurrent Function)

GD31-AB06은 단상, 2상 및 3상 과전류와 단락 보호에 사용될 수 있도록 순시 (Instantaneous Time) 특성과 반한시 (Inverse Time) 특성, 정한시 (Definite Time) 특성을 구비하고 있습니다. 또한, 계전기 설정에서 방향의 사용 유무를 두어 방향을 사용하지 않으면 방향성을 가지지 않는 단순 과전류 계전 기능으로도 사용할수 있습니다. GD31-AB06은 순시 요소를 IDOCR, 한시 요소를 TDOCR로 표기하고 있습니다.


<그림1> 과 같이 사고 지점에 따라 DOCR1 또는 DOCR2가 동작되며 최대 감도 위상각(MTA)은 ±90° 설정이 가능하며 동작 위상각은 기준위상각의 ±87°입니다.

<Figure 1. IDOCR 설치 위치>

방향성 3상 과전류는 선간전압을 기준 위상각으로 합니다. 즉, A상 전류는 선간전압 Vbc를 기준 위상각으로 하고, B상 전류는 선간전압 Vca, C상 전류는 선간전압 Vab를 기준 위상각으로 합니다.

A상 전류의 동작 특성은 아래 그림과 같습니다.

< Figure 2. A상 전류의 동작 특성>

또한, 지근단 3상 단락 사고로 인하여 전압이 상실 될 경우 메모리에 저장된 전압으로 1초간 방향을 판단하며, 1초가 지난 뒤에는 기준 전압이 전혀 없는 상태가 되므로 이때를 대비해 Volt Loss Block이라는 설정을 두어 방향을 판단할 수 없는 상황에 OCR 요소로 동작을 할 것인지, 아니면 동작하지 않을 것인지를 선택할 수도 있습니다. 즉, Volt Loss Block을 Disabled로 설정하면 OCR 요소로 동작을 하고, Enabled로 설정하면 OCR 요소로 동작하지 않습니다.

그리고 동작영역에서 경계부분의 ±3° 부동작 영역을 두어 경계부분에서 동작과 복귀를 반복하는 불안정한 계전기 동작을 방지하고 있습니다.

순시 특성은 설정된 정정 조건의 사고 발생 시 즉시 Trip 신호를 출력하는 기능으로 Trip 시간은 정정치의 2배 이상의 전류가 유입될 때 15ms이하로 동작하며, 반한시 특성은 전류와 시간의 함수로 전류의 크기가 클수록 동작시간은 짧아지며, 동작특성이 유도형 계전기와 동일하게 구현되어 있어 유도형 계전기 대체사용 시 동일한 정정을 할 수 있어 편리합니다.

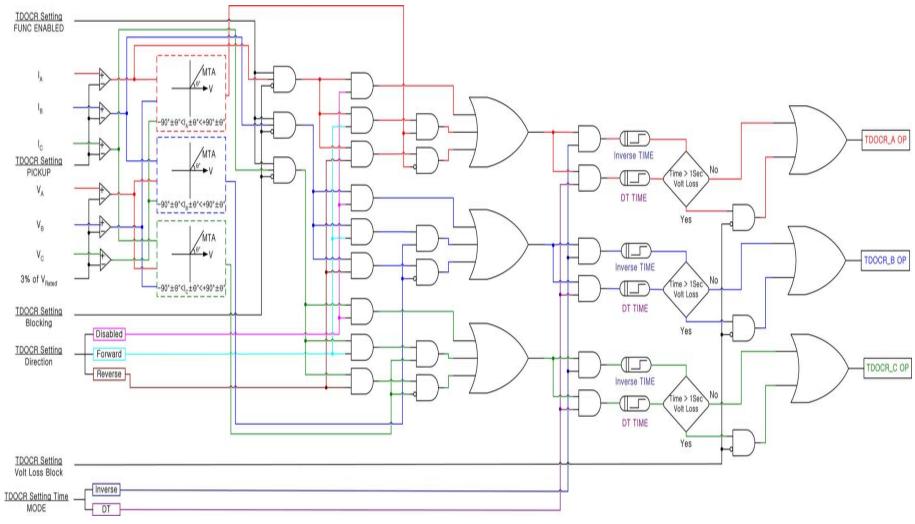
4개의 국제 표준 (IEC) 반한시 특성과 3개의 KEPCO 형 반한시 특성이 구현되어 있습니다.

반한시 특성을 적용하고자 할 때 8가지 특성 중에서 하나를 선택하시면 됩니다. 국제표준 IEC255-4에 따른 4개의 반한시 특성과 3개의 KEPCO형 특성의 시간과 전류 관계식은 다음과 같습니다.

$$T = \left(\frac{K}{\left(\frac{I_i}{I_s}\right)^L - 1} + C\right) \times \frac{M}{10}$$

여기서 T:동작시간, K와 C:계전기 특성값, $I_i:$ 계전기 입력 전류,

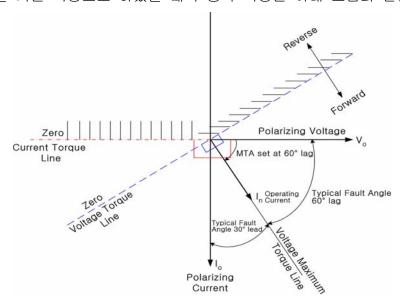
 I_s :계전기 동작 정정치, L:특성 곡선지수, M:동작 시간 배율(Time Lever)


시 간 특 성	=	성	표시 기호	비고		
N E 7 8	K	L	C	표시 기호	01 12	
반한시	0.14	0.02	0	NI	-	
방향성 반한시	0.0515	0.02	0.114	KDNI	KEPCO형	
경보유도형 반한시	0.11	0.02	0.42	KNI	KEPCO형	
강반한시	13.5	1	0	VI	-	
경보유도형 강반한시	39.85	1.95	1.084	KVI	KEPCO형	
초반한시	80	2	0	EI	-	
장반한시	54	1	0 LI		-	
정한시	-	=	-	DT	=	

계전기 정정 시 한시특성곡선을 선택하면 위의 표에 표시되는 $\mathbf{K},\ \mathbf{L},\ \mathbf{C}$ 값이 정해집니다.

IDOCR Setting FUNC ENABLED /MTA -90*±0*<|_A±0*<+90*±0* IDOCR_A OP /MTA IDOCR Setting PICKUP DT TIME -90"±0"<|_n±0"<+90"±0" /MTA IDOCR_B OP 3% of V_{Rated} -90°±0°<1c±0°<+90°±0° DT TIME IDOCR Setting Blocking Yes - Disabled IDOCR Setting Forward Direction IDOCR_C OP Reverse Volt Loss DT TIME IDOCR Setting Volt Loss Block Inst IDOCR Setting Time MODE DT

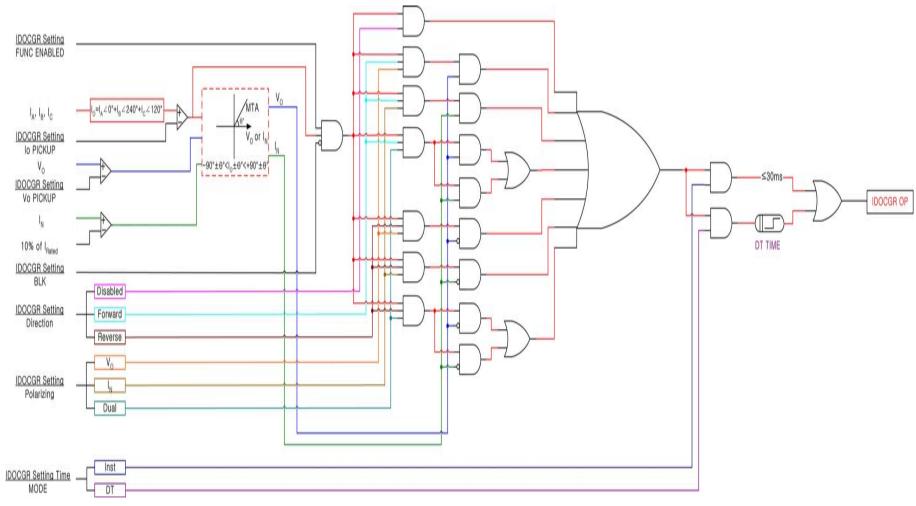
방향성 3상 과전류 요소의 동작에 관한 Logic Diagram은 아래와 같습니다.


<Figure 3. IDOCR Logic Diagram>

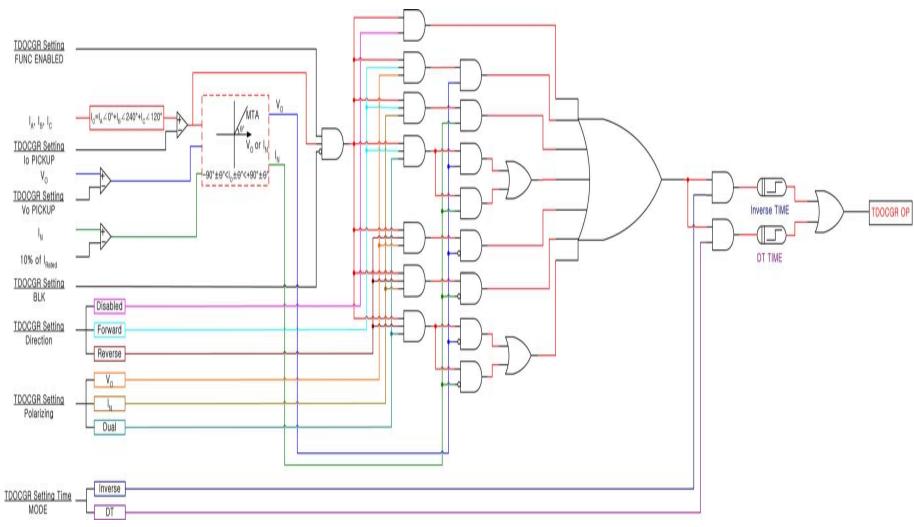
<Figure 4. TDOCR Logic Diagram>

3.2 방향성 지락 과전류 계전 기능 (Directional Ground Overcurrent Function)

이 보호요소는 방향성 3상 과전류 계전 기능과 동일한 원리 및 특성을 가지며 단지 지락전류 신호를 3상 전류에서 계산된 영상분으로 사용하는 것과 기준 극성 (Polarizing)을 GPT 3차측으로 입력 받는 영상 전압과 변압기 3차측 △결선으로 되어 있는 권선의 전류를 기준으로 하는 것이 다른 점입니다. 기준 극성은 영상 전압, 영상전류를 각각 사용하는 것과 영상전압, 영상전류를 동시에 사용하는 것 등 3가지가 있습니다. 영상전류를 기준 극성으로 사용하는 이유는 원거리 사고 발생 시 선로 임피던스로 인한 전압 강하로 계전기에서 감지되는 전압이 작아져 자칫 사고 방향을 인식 못하는 경우가 발생할 수 있기 때문에 영상전류도 기준 극성이 될 수 있도록 한 것입니다. 기준 극성을 영상전압으로 설정할 경우 최대 감도 위상각(MTA)을 -90°∼+90°까지 설정이 가능하고, 기준 극성을 영상전류로 설정할 경우에는 최대 감도 위상각은 0°로 고정입니다. 만약 기준 극성을 영상전 압과 영상전류를 동시에 사용할 경우 OR 계념으로 동작이 됩니다. 지락 사고 발 생 시 지락 전류는 접지방식에 따라 영상전압을 기준으로 위상각이 달라지는데 일반적으로 비접지에서의 지락 전류는 영상전압보다 45° Lead이고, 저항접지에서 는 10° Lag, 직접접지에서는 60° Lag로 봅니다. 직접 접지 계통에서 영상전압과 영상전류를 기준 극성으로 하였을 때의 동작 특성은 아래 그림과 같습니다.


<Figure 5. 기준 극성을 Dual로 하였을 때의 동작 특성>

그리고 동작영역에서 경계부분의 ±3° 부동작 영역을 두어 경계부분에서 동작과 복귀를 반복하는 불안정한 계전기 동작을 방지하고 있습니다.


방향성 지락 과전류 계전 기능에서도 순시 요소와 한시 요소가 구비되어 있는데, 순시 요소는 IDGR, 한시 요소는 TDGR로 표기하고 있습니다.

순시 특성은 15ms이하(<mark>정정치의 2배 입력 시</mark>)로 동작하며, 반한시 특성은 방향성 3상 과전류 계전에서 구현되어 있는 시간과 동일합니다.

방향성 지락 과전류 요소의 동작에 관한 Logic Diagram은 아래와 같습니다.

<Figure 6. IDGR Logic Diagram>

<Figure 7. TDGR Logic Diagram>

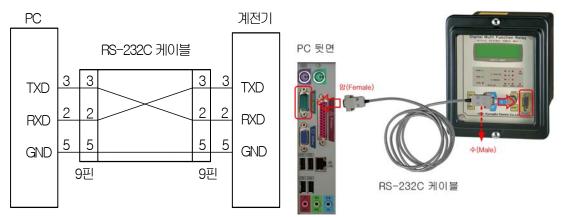
4. 부가 기능 (Subsidiary Function)

4.1 계측 표시 (Metering)

본 계전기 (GD31-AB05)는 각 상 전압/전류 크기 및 위상, 대칭분 전압/전류 (정상/역상/영상) 크기 및 위상, 각 상 유효/무효 전력, 3상 역률/유효/무효/피상 전력 등 고정밀 계측기능을 가지고 있습니다.

항 목	특 징					
	● 각 상 별로 기본파 상전압, 선간전압 실효치					
 기본파 전압	● A상 전압 기준 위상 계측					
	● 계전기 입력 전압을 PT비로 환산한 1차 전압					
	● 계측 범위 : 0 ~ 260V (Phase PT Ratio 1:1일 때)					
	● 각 상 별로 기본파 전류 실효치					
 기본파 전류	● A상 전압 기준 위상 계측					
	● 계전기 입력 전류를 CT비로 환산한 1차 전류					
	● 계측 범위 : 0 ~ 250A (Phase CT Ratio 5:5일 때)					
	● N상 전류 실효치 및 위상 계측					
영상 전류 (In)	● 계전기 입력 전류를 CT비로 환산한 1차 전압					
	● 계측 범위 : 0 ~ 250A (Ground CT Ratio 5:5일 때)					
	● 정상, 역상, 영상분 전압/전류 크기 및 위상 계측					
	● 계전기 입력 전압/전류를 PT/CT비로 환산한 1차					
니 대칭분 전압/전류	전압/전압					
4182 24/2# 	● 계측 범위					
	- 0 ~ 260V (Phase PT Ratio 1:1일 때)					
	- 0 ~ 250A (Phase CT Ratio 5:5일 때)					
역 률 (PF)	● 각 상의 역률 및 Total 역률 계측					
7 2 (II)	● 계측 범위 : -99.9% ~ +99.9%					
	● 각 상전압 / 선간전압 실효치 및 위상 계측					
각 상 유효전력	● 각 상 별로 전류 실효치 및 위상 계측					
	● 각 상 유효 전력 계측					
	● 유효 전력 계측 범위 : 0 ~ 62500W					
	● 3상 유효/무효/피상 전력 계측					
3상 유효/무효/피상전력	● 유효 전력 계측 범위 : 0 ~ 62500W					
	● 무효 전력 계측 범위 : 0 ~ 62500Var					
	● 피상 전력 계측 범위 : 0 ~ 62500VA					
계측 정밀도	• 0.1% rdg. ±2 dgt.					

<Table 1. 계측 표시>


4.2 통 신 (Communication)

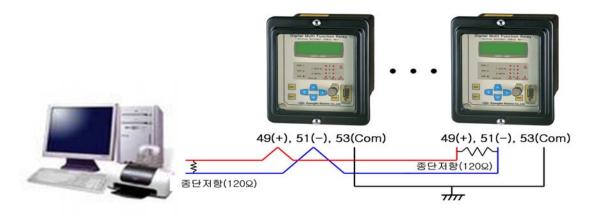
본 계전기 (GD31-AB06)는 범용의 RS-232C / RS-485C 통신 방식을 제공하며 최대 38400Bps 속도의 Data 전송이 가능합니다. 계전기에는 2개의 통신 Port가 있는데, 전면부에 RS232C Port 1개와 후면부에 RS485C Port 1개가 있습니다. 전면부 RS232C 통신 Port는 MMI Application Tool을 위한 것으로 PC에 연결하여 계전기에 전력계통 및 보호요소, 출력접점 구성을 변경하거나 계전기에 기록된 Event Data 및 사고파형 등 Data를 받아 분석하는데 사용되며, 후면의 RS485C 통신 Port는 원방 SCADA 통신을 위해 사용됩니다.

프로토콜	통신방식	• RS-232/485					
	지원 프로토콜	• ModBus/DNP3.0					
	통신 거리	• 1.2km					
	통신 선로	• 범용 RS-485C Two-Pair cable					
통신 규격 (RS-485C)	통신 속도	• 300 ~ 38400 bps					
	전송 방식	Half-Duplex					
	최대 입출력 전압	• -7V ~ +12V					
	전면 표시부	 RS232 포트 1개 (19200 BPS, ModBus 프로토콜) 유지보수 및 G6R-Setting Tool 					
통신 포트	후면	 RS485 포트 1개 (300 ~ 38400 BPS, DNP3.0/ModBus 프로토콜) 상위 SCADA 통신 단자 번호 : 49(+), 51(-), 53(Com) 					

<Table 2. 통신 방식>

4.2.1 RS-232C 통신 (RS-232C Communication)

<Figure 8. RS-232C 회로도>


<Figure 9. RS-232C 연결>

- ▶ 본 제품에서 제공하는 RS-232C 통신 Cable은 <Figure 8>과 같이 2번 Pin과 3번 Pin이 엇갈린 Cross Cable을 사용하고 있으므로 엇갈림이 없는 일반적인 Direct Cable 사용 시 통신이 되지 않고 "Communication Error" Message를 발생시킵니다.
- ▶ PC에 RS-232C Port가 없는 경우 USB Port를 사용하여 통신을 할 수 있는데 USB Port 사용 시 USB TO 232 Cable을 사용하여야 하며, 이 Cable은 Direct Cable이어서 계전기에 연결하여 통신을 하면 통신이 되지 않으며, USB TO 232 Cable의 232 Port에 당사에서 제공하는 Cross Cable을 연결하여 사용하시면 됩니다.

4.2.2 RS-485C 통신 (RS-485C Communication)

본 계전기(GD31-AB06)는 상위 감시 제어 시스템과의 연결을 위해 절연된 RS-485 Half Duplex 통신방식을 제공합니다. 이 통신방식은 Multi Drop으로 계전 기를 연결할 수 있으며, 통신거리는 최대 1.2km까지입니다.

RS-485C 통신을 하기위해 통신 Cable 설치 시 아래 그림과 같이 RS-485C선로의 종단에 120Ω 저항을 병렬로 연결하시면 됩니다.

<Figure 10. RS-485C 결선도>

4.3 자기 진단 기능 (Self Diagnosis Function)

자기 진단 기능은 계전기의 운전 상태를 상시 감시하여 기기의 오부동작을 방지하기 위한 것입니다.

계전기에 이상이 검출되면 계전기 전면에 있는 적색의 "ERR" LED가 점등되고 Status Menu에 있는 Self Diagnosis에 자기진단 항목 중 이상이 있는 항목에 "ERR"로 표시하며, Event Data에 자기진단이상 내용을 기록합니다.

또한, 계전기에 이상이 발생하면 계전 요소의 동작이 즉시 저지되고, 이상 발생표시는 이상 상태가 제거 될 때까지 LCD 및 LED에 표시합니다.

사용자가 이상 상태를 확인하고 적절한 조치를 취한 다음 이상 원인이 제거되면 계전기 전면 LCD에 "System OK"라는 문구가 표시되며, "RESET" Key를 누르면 계전기 전면 "ERR" LED가 소등되고 Status 메뉴에 있는 Self Diagnosis의 이상 항목도 "OK"로 바뀌게 됩니다.

계전기에 이상이 발생하면 사용자는 Status Menu에 있는 Self Diagnosis를 확인하여 자기진단 항목 중 어느 항목에 이상이 있는지 확인하시고, 당사 A/S 부서로 연락하시면 적절한 조치를 받으실 수 있습니다.

제품의 불완전한 상태에서 계전기의 제어전원을 Off-On하는 등의 행위는 지양해주시기 바랍니다.

Self Diagnosis 항목을 확인하는 방법은 33Page를 보시면 상세히 설명되어 있으며, 당사 A/S 부서의 연락처는 02-465-1133입니다.

주요 진단 항목은 다음과 같습니다.

- 직류전원 이상 감시 (DC Power Fail)
- CPU 이상 감시 (CPU Fail)
- 메모리 이상 감시 (Memory Fail)
- 정정치 범위 이상 감시 (Setting Fail)
- A/D 변환기 이상 감시 (A/D Converter Fail)
- 디지털 입력 회로 이상 감시 (DI Circuit Fail)
- 디지털 출력 회로 이상 감시 (DO Circuit Fail)
- Calibration 이상 감시 (Auto Calibration)

4.4 Event 기록 기능 (Event Record Function)

계전 요소가 동작하거나 계전기의 정정치 변경, 계전기 이상 발생 등 계전기의 상태가 변화될 경우 이력사항을 확인할 수 있도록 기록하는 기능입니다.

고장분석 시에 기록된 고장파형과 Event Data의 발생 순서를 함께 비교하면 고장 원인과 기기 간의 오부동작 유무 등을 종합적으로 판단할 수 있습니다.

저장된 Event Data는 계전기 전면부에 있는 RS232C 통신 Port에 당사에서 제품과함께 제공하는 RS232C Cable로 PC와 연결하여 MMI Application Tool을 이용하면 PC에서 Event Data를 확인할 수 있습니다.

기록 횟수	● 최대 512개까지 기록						
분 해 능	• 1ms 단위						
Event 발생 항목	 보호 계전 요소 Pick-Up/Release/Operation 접점 입력 상태 변화 접점 출력 상태 변화 자기 진단 Error 발생 Setting 변경 Event Recording Data Clear Fault Recording Data Clear System Reset (Power On) System Reset (Power Down) 						
표시 항목	● Event 발생 항목 ● 보호 계전 요소의 Pick-Up/Release/Operation ● 전기량 : 전압/전류 실효치 및 위상						
Data 유지, 저장	● 제어 전원이 상실되더라도 Data 유지 ● *.txt 파일로 저장 가능						

<Table 3. Event 기록>

4.5 파형 기록 기능 (Waveform Record Function)

이 기능은 계전기에 설정한 Fault Trigger 조건이 만족되면 그 시점을 전후로 파형을 기록하는 기능으로 계통 고장 해석이나 계통 조류 상황을 확인할 때 편리 한 기능입니다.

계전기에 기록된 파형 Data는 MMI Application Tool을 이용하여 계전기에서 Download 받아 Comtrade File 형식으로 저장할 수 있습니다.

저장된 Comtrade File은 당사에서 제공하는 Evaluation Tool을 이용하여 Graphic 형태로 고장 파형을 확인할 수도 있고, Doble이나 Omicron 등과 같은 전압, 전류 출력 장비를 통해 고장 상황을 재현할 수도 있습니다.

기록 횟수	● 설정에 따라 최대 8개까지 기록
Recording Type (Block × Cycles)	• 8×60, 4×120, 2×240
Sampling	• 36 Sample / Cycles
Waveform Record 발생 항목	 보호 계전 요소의 Operation 접점 출력 상태 변화 접점 입력 상태 변화
Waveform Record 표시 항목	 각 상별 전압/전류 (위상, 고조파, 왜형율) 접점 출력 상태 접점 입력 상태 보호 계전 요소 상태
Data 유지, 저장	● 제어 전원이 상실되더라도 Data 유지 ● *.cfg, *.dat 파일로 저장 가능 ● Comtrade File Format 지원

<Table 4. Waveform 기록>

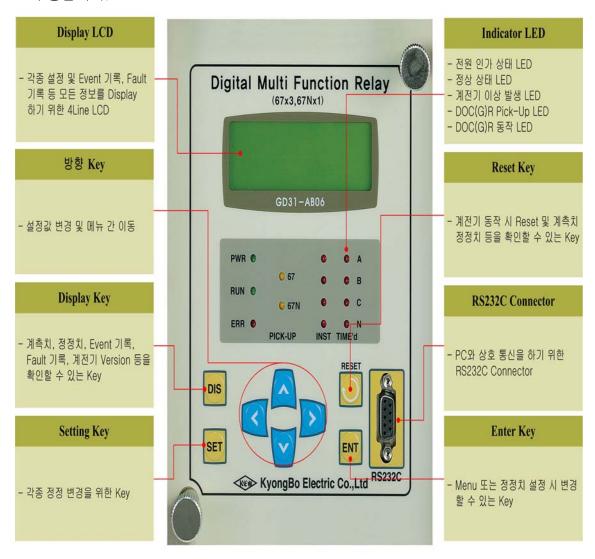
4.6 입력접점 제어기능 (Control Function by Input Contact)

본 계전기 (GD31-AB06)는 3개의 입력접점이 있습니다. - D/I1, D/I2, D/I3

- ▶ D/I1은 "Remote Reset (Annunciator Reset)" 기능으로 접점 입력이 활성화 되었 을 때 동작 상태 표시기 (LED) 및 접점을 복귀시킵니다.
- 이 입력접점은 SCADA 시스템에서 RTU를 통해서 원격에서 동작 상태를 복귀시키거나 Panel에 취부 된 별도의 Push Key로 동작 상태를 복귀시키고자 할 때 이용할 수 있습니다.
- ▶ D/I2는 "Trip Blocking (External Blocking)" 기능으로 보호요소 저지 신호로 사용됩니다.

3상 방향성 과전류, 방향성 지락 과전류 정정 Menu에 있는 External Block 항목을 "Yes"로 설정하면 D/I2 입력접점이 활성화될 때 보호 요소는 내부적으로 Blocking 됩니다.

- ▶ D/I3는 "Fault Recording Trigger (External Trigger)" 기능으로 Fault Recording의 설정 항목 중 TSRC(Trigger Source)가 "EXT_L_H", "EXT_H_L", "TRIP+EXT" 중에 한 가지로 설정되고 이 접점이 활성화될 때 파형을 기록합니다.
- 이 기능은 차단기의 개방 (Trip 또는 수동개방 지령에 의하여 개방) 시점을 기준으로 전류의 파형을 기록하고자 할 때 편리합니다.


D/I1	Remote Reset (Annunciator Reset)					
D/I2	Trip Blocking (External Blocking)					
D/I3	Fault Recorder Trigger (External Trigger)					

<Table 5. 입력접점에 의한 제어 기능>

5. 전면부 표시 (Display Panel Construction)

5.1 전면부 표시, 조작부의 구성 (Front-side Display Panel Structure)

전면 표시, 조작부는 아래와 같이 20자 4줄의 LCD와 13의 LED, 8개의 KeyPad, RS232C 통신 Connector로 구성되어 있습니다. 계전기 전면부에는 투명 Cover가 부착되어 있어 먼지나 이물질이 계전기에 침투하는 것을 방지하며, 사용자의 부주의로 인한 계전기 전면부의 파손을 미연해 줍니다. 또한, 정정치 변경 시 비밀 번호 입력을 거치게 함으로써 지정된 사용자 외에 임의의 사람이 정정치를 변경하는 것을 방지하였습니다. 계전기 정상 운전 시 "RESET" Key를 누르면 LCD를통해 운전 정보를 조회할 수 있으며, 운전 정보를 확인하는 동안에도 보호기능은 수행됩니다.

<Figure 11. 전면 표시부>

5.2 Key Pad & Communication Connector

Direction (방향) Key	설정값 변경 및 메뉴 간 이동 시에 사용됩니다.						
"DIS" Key	Metering, Event 기록, Waveform 기록, Software Version 등 정보를 확인할 수 있습니다.						
"SET" Key	각종 설정 가능한 정정치를 변경하고자 할 때 사용됩니다.						
"RESET" Key	계전기가 동작 시에는 Indicator Reset으로 사용되고 사고가 발생하지 않았을 때는 커버를 열지 않고 정정치 확인을 할 수 있는 Key입니다.						
"ENT" Key	메뉴 선택 시나 각종 정정치 변경 시에 변경, 확인할 수 있는 Key입니다.						
RS232C Connector	계전기와 PC간에 RS232C 통신을 할 수 있는 단자이며, MMI Application Tool을 이용하여 정정치 변경 및 Event Data, Waveform Record Data 등을 확인할 수 있습니다.						

5.3 LED (Operating Indicators)

PWR (녹색)	전원이 정상적으로 인가되었을 때 녹색으로 항상 점등되어 있는 표시기입니다.
RUN (녹색)	전원이 인가되어 보호 계전기의 CPU가 정상 상태임을 표시하는 LED로 전원이 인가된 상태에서 LED가 점등되지 않을 경우 장치에 심각한 문제가 있는 상태이므로 보수 또는 교체를 하여야 합니다.
ERR (적색)	장치 내에 이상이 있어 이상이 자기 진단 기능에 의해 감지되었을 때 "ERR" LED가 적색으로 점등되며, 이때에는 계전요소의 동작이 저지됩니다. 장치이상의 상세한 내용은 Self Diagnosis를 통하여 해당 항목을 확인할 수 있으며 장치 이상이 제거된 후 "RESET" Key를 누르면 점등된 LED가 소등됩니다.
67 67N (황색)	DOCR, DGR 요소가 동작 되었을 때 황색의 LED가 점등하고 복귀 되면 자동으로 소등됩니다.
INST, TIME'd (적색)	DOCR, DGR 요소의 동작 표시기로서 순시, 한시를 각 상별로 표시합니다. 계전 요소가 동작하면 Trip 출력과 동시에 해당 요소의 LED가 적색으로 점등하며 계전 요소가 복귀되어도 "RESET" Key를 누를 때까지유지됩니다.

28 / 110

6. 표시 및 정정 (Display & Setting Modes)

6.1 Key 조작 및 LCD 구성

6.1.1 LCD 초기 표시 상태, 백 라이트 (Backlight) On/Off

LCD 화면은 계전기 초기화면, 계전기 상태 표시 (Display) 화면, 계전기 정정치 (Setting) 입력 화면으로 구성됩니다.

계전기에 전원을 인가하면 아래와 같은 계전기 초기 화면이 표시됩니다.

K y o n g B o G D 3 1 - A B 0 6 S y s t e m O K

장치에 이상이 있을 때는 "System OK" 대신 "System Error"가 표시됩니다. LCD의 Backlight는 버튼 조작 없이 3분이 지나면 자동으로 Off됩니다.

6.1.2 LCD 화면 표시 및 버튼 조작의 기본 원칙

LCD화면에 표시되는 정보는 Tree 구조로 되어있고 $\underline{\Delta}(\leftarrow)$, 우(\rightarrow), 상(\uparrow), 하(\downarrow) Key로 Tree 구조의 정보를 찾아 선택할 수 있습니다.

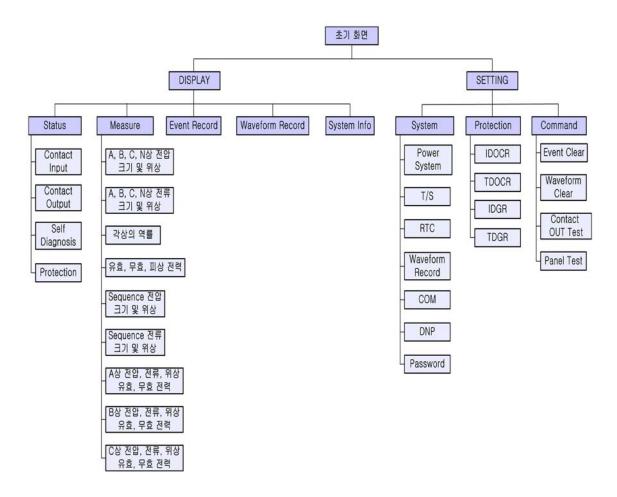
커서(♠)가 위치한 항목이 현재 선택한 항목을 나타내며 우(→)방향 Key를 누르면 세부 항목이 표시됩니다. 현재 항목을 빠져 나가려면 좌(←)방향 Key를 누르면됩니다.

LCD상의 첫 번째 줄에서 우 삼각형 표시(▶)는 메뉴 Tree 상의 Level을 나타냅니다.

(▶)표시가 하나인 경우에는 메뉴 Tree 상의 최상위 항목을 의미하며, (▶▶)는 최상위 항목에서 세부 항목으로, 즉 메뉴 Tree 상의 두 번째 Level을 표시하며, 이것이 또 세부항목을 가지는 경우에는 세 번째 Level의 세부항목 (▶▶▶)로 표시됩니다.

"DIS" Key는 Display Mode, "SET" Key는 Setting Mode로 이동하게 됩니다.

6.1.3 One-button 丑人


"RESET" Key를 반복하여 누르면 계측치 및 정정치 등을 순서대로 LCD 화면으로 확인할 수 있습니다. 이는 계전기 전면부에 투명 Cover가 씌워 진 상태에서 Cover를 열지 않고 확인할 수 있게 한 것입니다.

계전 요소가 동작하여 Operating Indicator가 켜진 경우는 Indicator Reset으로 동작합니다.

6.1.4 Menu-Tree

<Figure 12. Menu Tree>는 계전기에서 표시하여 줄 수 있는 메뉴 구성을 요약 하였습니다.

각 메뉴의 조작 및 설명은 다음 장에서 자세히 기술하였습니다.

<Figure 12. Menu Tree>

6.2 Display 화면 표시 (Display Modes)

초기화면에서 "DIS" Key를 누르면 Display Mode 화면으로 전환되며 계전기의 입출력 접점 및 자기진단 상태, 보호 요소 동작상태, 계측, Event Data, Waveform Record Data, Relay Version 등을 확인할 수 있습니다. Display의 화면은 아래와 같습니다.

상태 표시화면 (Status Mode)으로 전환하기 위해서는 커서 (←)가 위치한 상태에서 우(→)방향 Key를 누르면 아래와 같은 세부적인 상태 표시 항목으로 이동합니다.

상(↑)방향이나 하(↓)방향 Key를 누르면 커서 (♠)의 위치가 함께 이동하는데, 표시 항목은 순환식으로 이동됩니다. 즉, 첫 번째 항목에서 상(↑)방향 Key를 누르면 맨 마지막 항목으로 이동하며, 맨 마지막 항목에서 하(↓)방향 Key를 누르 면 첫 번째 항목으로 이동합니다.

6.2.1 Status 화면

Status 화면에서는 Contact Input, Contact Output, Self-Diagnosis, Protection을 표시하는 4개의 세부 항목이 있습니다.

각 항목간의 이동은 상(↑)방향과, 하(↓)방향 Key를 이용하며, 각 항목에는 세부 항목을 가지고 있으며, 세부 항목으로 전환하려면 원하는 항목에 커서(♣)를 위치시킨 다음 우(→)방향 Key를 누르면 됩니다.

Status의 화면은 아래와 같습니다.

Status 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.1.1 Status ▶ Contact Input 항목

계전기에는 3개의 접점 입력이 있는데, 이 메뉴는 현재 각 접점 입력의 ON/OFF 상태를 표시합니다.

"On" 상태는 접점 입력이 활성화 되어 있음을 표시하고 논리적으로 1을 의미합 니다.

반대로 "Off" 상태는 접점 입력이 비활성화 되어 있음을 표시하고 논리적으로 0을 의미합니다.

Contact Input의 화면으로 이동하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다. (1) "DIS" Key 누름 : Display 화면 표시

```
D i s p l a y

1 . S t a t u s

2 . M e a s u r e

3 . E v e n t R e c o r d
```

(2) 우(→)방향 Key 누름 : Display ▶ Status 화면 표시

	•		S	t	a	t	u	S									
1	•	C	0	n	t	a	c	t		I	n	p	u	t			+
2	•	\mathbf{C}	0	n	t	a	c	t		0	u	t	p	u	t		
3		S	e	l	f	_	D	i	a	g	n	0	S	i	S		

(3) 우(→)방향 Key 누름 : Display ▶ Status ▶ Contact Input 화면 표시

	•	•		C	0	n	t	a	c	t	I	n	p	u	t		
1	•	C	0	n	t		I	n	1				:	0	n		←
2		C	0	n	t		I	n	2				:	0	f	f	
3	•	C	0	n	t		I	n	3				:	0	f	f	

Contact Input 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.1.2 Status ▶ Contact Output 항목

계전기에는 8개의 접점 출력이 있는데, 이 메뉴는 현재 각 접점 출력의 활성화 상태를 표시합니다.

"Ene" 상태는 접점 출력이 활성화 되어 있음을 표시하고 논리적으로 1을 의미합 니다.

반대로 "DeE" 상태는 접점 출력이 비활성화 되어 있음을 표시하고 논리적으로 0을 의미합니다.

Contact Output의 화면으로 이동하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "DIS" Key 누름 : Display 화면 표시

```
Display

1. Status

2. Measure

3. Event Record
```

(2) 우(→)방향 Key 누름 : Display ▶ Status 화면 표시

```
S t a t u s

1 . C o n t a c t I n p u t

2 . C o n t a c t O u t p u t

3 . S e l f - D i a g n o s i s
```

(3) <mark>하(↓)방향 Key</mark> 한번 누름 : 커서 (♠)가 2.Contact Output 항목 지시 화면 표시

```
S t a t u s

1 . C o n t a c t I n p u t

2 . C o n t a c t O u t p u t

3 . S e l f - D i a g n o s i s
```

(4) 우(→)방향 Key 누름 : Display ▶ Status ▶ Contact Output 화면 표시

•	•		C	0	n	t	a	c	t	0	u	t	p	u	t	
1		T	/	S	#	0	1					:	E	n	e	←
2		T	/	S	#	0	2					:	D	e	E	
3		T	/	S	#	0	3					:	D	e	E	

화면에 나타나지 않은 다른 출력접점의 상태를 확인하려면 <mark>상(↑)이나 하(↓)방향</mark> Key를 누르시면 됩니다.

Contact Output 화면에서 좌(←)방향 Key를 누르면 이 메뉴에서 빠져나와 상위메뉴로 전환됩니다.

6.2.1.3 Status ▶ Self-Diagnosis 항목

이 메뉴는 자기 진단 기능의 결과를 진단 항목별로 표시합니다.

진단 항목은 제어 전원, CPU, 메모리, 정정치, A/D 변환기, Digital Input 회로, Digital Output 회로, Calibration이며 각 항목에 이상 발생 시 "ERR" 표시되고, LCD 초기화면에 "System OK" 대신 "System Error"가 표시되며, "ERR" LED가 적색으로 점등됩니다.

이상 원인이 제거되면 LCD 초기화면에 "System Error!"라고 표시된 부분이 "System OK!"로 바뀌지만, 계전기 전면에 있는 "ERR" LED와 자기진단 결과 상태는 "RESET" Key를 누르기 전까지 그대로 유지하므로 고장 원인을 확인한 후에는 "RESET" Key를 눌러 상태 표시를 해제하시기 바랍니다.

Self-Diagnosis의 화면으로 이동하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다. (1) "DIS" Key 누름 : Display 화면 표시

```
D i s p l a y

1 . S t a t u s

2 . M e a s u r e

3 . E v e n t R e c o r d
```

(2) 우(→)방향 Key 누름 : Display ▶ Status 화면 표시

```
S t a t u s
C o n t a c t I n p u t
C o n t a c t O u t p u t
S e l f - D i a g n o s i s
```

(3) 하(↓)방향 Key 두 번 누름 : 커서 (♣)가 3.Self-Diagnosis 항목 지시 화면 표시

```
S t a t u s

1 . C o n t a c t I n p u t

2 . C o n t a c t O u t p u t

3 . S e l f - D i a g n o s i s
```

(4) 우(→)방향 Key 누름 : Display ▶ Status ▶ Self-Diagnosis 화면 표시

	•	•		S	e	l	f	-	D	i	a	g	n	0	S	i	S	
1	•	D	\mathbf{C}		P	0	W	e	r					:	E	R	R	←
2	•	M	e	m	0	r	y							:	O	K		
3	•	S	e	t	t	i	n	g						:	O	K		

화면에 나타나지 않은 다른 자기 진단 항목 상태를 확인하려면 <mark>상(↑)이나 하(↓)</mark> 방향 Key를 누르시면 됩니다.

Self-Diagnosis 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.1.4 Status ▶ Protection 항목

이 메뉴는 4가지 보호 계전 요소 별 Pick-Up, Operation 상황을 실시간으로 확인 표시합니다.

보호 계전 요소가 Pick-Up이나 Operation 되면, 그러한 현상이 일어난 해당 상을 표시합니다.

Operation이 발생하여 동작한 표시는 "RESET" Key를 누를 때까지 표시합니다.

Protection의 화면으로 이동하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다. (1) "DIS" Key 누름 : Display 화면 표시

```
D i s p l a y

1 . S t a t u s

2 . M e a s u r e

3 . E v e n t R e c o r d
```

(2) 우(→)방향 Key 누름 : Display ▶ Status 화면 표시

```
    S t a t u s
    C o n t a c t I n p u t
    C o n t a c t O u t p u t
    S e l f - D i a g n o s i s
```

(3) 하(↓)방향 Key 세 번 누름 : 커서 (♠)가 4.Protection 항목 지시 화면 표시

```
Status
4. Protection
```

(4) 우(→)방향 Key 누름 : Display ▶ Status ▶ Protection 화면 표시

Protection 화면에서 <mark>좌(←)방향 K</mark>ey를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.2 Measure 화면

Measure 화면에서는 각 상별로 계측된 전압/전류에 대해 기본파 전압/전류 계측 지 및 대칭분 전압/전류, 각 상 유효/무효전력, 3상 역률/유효/무효/피상전력을 표시합니다.

각 상별 기본파 전압/전류는 DFT(Discrete Fourier Transform) 알고리즘을 사용하여 계측하였으며, 대칭분 전압/전류는 계측한 각 상별 전압/전류를 대칭좌표법을 이용하여 연산하였습니다.

Measure의 화면은 아래와 같습니다.

Measure 화면은 다음과 같이 10가지의 세부 항목을 가지고 있습니다.

- 1. 선간전압 : 선간전압 크기와 위상 표시 (PT 1차측으로 표시)
- 2. 각 상 전압 : 각 상의 전압 크기와 위상 표시 (PT 1차측으로 표시)
- 3. 각 상 전류 : 각 상의 전류 크기와 위상 표시 (CT 1차측으로 표시)
- 4. 각 상 역률 : 각 상의 역률 크기와 Total 역률 표시
- 5. 3상 유효/무효/피상전력 : 3상의 유효/무효/피상전력 표시
- 6. 대칭분 전압 : 영상, 정상, 역상분의 전압 크기와 위상 표시 (PT 1차측으로 표시)
- 7. 대칭분 전류 : 영상, 정상, 역상분의 전류 크기와 위상 표시 (CT 1차측으로 표시)
- 8. A상 정보 : A상 전압/전류/유효/무효전력 크기와 위상 표시
- 9. B상 정보 : B상 전압/전류/유효/무효전력 크기와 위상 표시
- 10. C상 정보 : C상 전압/전류/유효/무효전력 크기와 위상 표시

PT 결선 설정에서 WYE/INT, WYE/GPT인 경우에는 상전압, 선간전압을 계측하고, Del/GPT인 경우에는 선간전압만 계측합니다.

화면에 나타나지 않은 다른 계측 상황을 확인하려면 상(↑)이나 하(↓)방향 Key를 누르시면 됩니다.

Measure 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.3 Event Record 화면

이 항목은 최대 512개까지 저장되는 Event Data를 볼 수 있으며, 최근에 발생한 Event Data부터 표시합니다.

즉, Event Data 번호가 낮을수록 최근에 발생한 Event임을 의미합니다.

Event 개수가 512개 이상일 경우에는 가장 오래된 Event Data를 지우고 새로운 Event Data를 기록합니다.

Event Record의 화면은 아래와 같습니다.

 ▶
 E v e n t
 0 0 1 / 0 7 1

 0 6 / 0 7 / 1 9 , 1 0 : 1 9 : 4 1 . 1 5

 S y s t e m
 R e s e t

 - P o w e r
 O n

위의 화면에서 첫 줄에 있는 "001/071"의 의미는 총 71개 Event가 발생하였고 그 중 처음 Event 임을 의미하며, 두 번째 줄에 있는 "06/07/19,10:19:41.15"은 2006년 07월 19일 오전 10시 19분 41.15초에 Event가 발생한 것임을 의미하며, 세 번째와 네 번째 줄에 있는 "System Reset"과 "Power On"은 발생한 Event의 내용을 나타내는 것입니다. 다음 Event를 확인하려면, 하(↓)방향 Key를 누르시면 됩니다.

Event Record 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.4 Waveform Record 화면

최대 8개의 고장 파형 기록에 대한 정보를 확인할 수 있으며, 최근에 발생한 고장 기록부터 표시합니다.

즉, 번호가 낮을수록 최근에 발생한 고장 파형 기록임을 의미합니다.

Waveform Record 개수가 8개 이상일 경우에는 가장 오래된 Waveform Data를 지우고 새로운 Waveform Data를 기록합니다.

Waveform Record의 화면은 아래와 같습니다.

	>		W	a	V	e	f	0	r	m		1	/	8					
0	6	/	0	7	/	1	9	,	1	6	:	4	1	:	5	1		2	8
P	K	P	+	T	R	I	P						T	r	i	g	٠	d	
2	1	6	0		S	a	m	p	1	e		В	l	0	c	k	S		

위의 화면에서 첫 줄에 있는 "1/8"의 의미는 총 8개 Waveform Data가 저장되었고, 그 중 첫 번째 Waveform Data임을 의미하며, 두 번째 줄에 있는 "06/07/19,16:41:51.28"은 2006년 07월 19일 오후 4시 41분 51.28초에 저장된 것임을 의미하여, 세 번째 줄에 있는 "PKP+TRIP Trig'd"는 Waveform Data를 저장한 조건을 나타내며, 네 번째 줄에 있는 "2160 Sample Blocks"는 저장한 Waveform Data의 Sample 개수를 의미합니다.

GD31-AB07 계전기는 한 주기에 36Sample을 하며 2160Sample을 저장하므로 2160÷36=60Cycle 즉, 1Sec의 Waveform Data를 저장합니다.

다음 Waveform Data를 확인하려면, 하(↓)방향 Key를 누르시면 됩니다.

Waveform Record 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.2.5 System Info. 화면

이 항목은 계전기의 Version을 표시합니다.

System Info. 화면에서 <mark>좌(←)방향 Ke</mark>y를 누르면 이 메뉴에서 빠져나와 상위 메뉴 로 전환됩니다.

			1. Contact Input	Cont In1 ~ 3
			2. Contact Output	T/S#01 ~ 08
		1. Status	3. Self-Diagnosis	 DC Power Memory Setting AD Converter DI/O Circuit Auto Cal.
초 기	Display		4. Protection	 IDOCR TDOCR IDGR TDGR
화 면	(DIS)	2. Measure	1. 3 Line to Line 2. 3 Phase Voltage 3. 3 Phase Current 4. 3 Phase Power 5. Average/Reactive 6. Sequence Voltage 7. Sequence Current 8. A Phase Voltage 9. B Phase Voltage 10. C Phase Voltage	Factor e/Apparent Power e t e/Current/Power
		3. Event Record	1 ~ 512 Event Dis	play
		4. Waveform Record	1 ∼ 8 Waveform □	Display
		5. System Info.	Relay Version	


<Table 6. Display Menus>

6.3 Setting 방법 (Setting Modes)

LCD 초기화면에서 "SET" Key를 누르면 정정치 화면으로 전환됩니다. 본 계전기가 올바르게 동작하기 위해서는 사용하는 계통 환경과 맞게 적절하게 정정을 해주어야 합니다.

정정요소는 System, Protection, Command 등 3개의 항목으로 구성되어 있습니다.

Setting의 초기화면은 아래와 같습니다.

계전기 설정을 변경할 때에는 Password 입력을 요구하는 화면이 나타납니다. 정확한 Password 입력 후 설정 변경을 허용함으로써 철저한 보안 유지가 됩니다.

```
Enter Password: * * * *
```

예를 들어 Phase PT Ratio를 209.1:1로 설정하고자 한다면, 아래와 같은 순서로 조작을 하시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(2) 우(→)방향 Key 누름 : Setting ▶ System 화면 표시

```
S y s t e m
P o w e r S y s t e m
T / S
R T C
```

(3) 우(→)방향 Key 누름 : Setting ▶ System ▶ Power System 화면 표시

```
      ▶ ▶ Power System

      1 . FREQ : 60 Hz ←

      2 . PT_CON : WYE/GPT

      3 . PPT SEC: 110 . 0 V
```

(4) 하(↓)방향 Key 세 번 누름 : 커서 (♣)가 4.P PT RAT 항목 지시 화면 표시

 ▶
 Power
 System

 2. PT_CON
 : WYE/GPT

 3. P_PT_SEC:110.0
 V

 4. P_PT_RAT:
 1.0:1 ←

(5) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

Enter Password: * * * *

(6) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 4.P PT RAT 항목 지시 화면 표시

 ▶
 Power
 System

 2. PT_CON
 : WYE/GPT

 3. P_PT_SEC:110.0
 V

 4. P_PT_RAT:
 1.0:1 ←

- (7) 우(→)방향 Key 누름 : 커서 (◆)가 4.P_PT_RAT 항목 지시 화면표시에서 "1.0" 값이 점멸
- (8) 상(↑)방향 Key를 눌러 "209.1" 값을 설정
- (9) 정정값 설정 완료 후 "ENT" Key 누름

 ▶
 Power
 System

 2. PT_CON
 WYE/GPT

 3. P_PT_SEC:110.0
 V

 4. PPTRAT:209.1:1

(10) 좌(←)방향 Key 누름 : Setting ▶ System 화면 표시

▶ S y s t e m
1 . P o w e r S y s t e m
2 . T / S
3 . R T C

(11) <u>좌(←)</u> 방향 Key 누름 : Setting 화면 표시

Setting

1. System

2. Protection

3. Command

(12) <u>좌(←)</u> 방향 Key 누름 : 아래의 같은 화면 표시. "No" 항목이 점멸

S a v e S e t t i n g
C h a n g e s ? N o

- (13) 상(↑) 혹은 하(↓)방향 Key를 눌러 "Yes"로 변경
- (14) "ENT" Key 누름 : 초기화면 표시

```
KyongBoGD31-AB05
SystemOK
```

만일 (13)번의 "No" 항목에서 "ENT" Key를 누르시면 정정했던 항목의 내용은 삭제되고 기존의 정정 Data가 유지됩니다.

또한 "Save Setting Changes?" "Yes"에서 "ENT" Key를 누르기 전까지는 변경한 정정치가 보호 계전에 영향을 미치지 않고 기존의 정정치가 적용됩니다. 모든 항목의 정정은 위와 같은 방법으로 하시면 됩니다.

6.3.1 System 설정

System 항목에는 전력계통 설정, 출력 접점, RTC, 고장 파형 기록 설정, 상위 시스템으로의 통신 설정, DNP 설정, 보안을 위한 암호 설정 등의 세부항목이 있습니다.

System의 화면은 아래와 같습니다.

```
▶ S y s t e m
1 . P o w e r S y s t e m
2 . T / S
3 . R T C
```

System 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 Setting의 초기 화면으로 전환됩니다.

6.3.1.1 System ▶ Power System 설정

Power System에서는 주파수와 PT 결선, Phase측의 PT 2차 정격/PT비, Ground측의 PT 2차 정격/PT비, Phase측의 CT비, Ground측의 CT비를 설정할 수 있는 항목입니다.

Power System의 화면으로 이동하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(2) 우(→)방향 Key 누름 : Setting ▶ System 화면 표시

```
S y s t e m
1 . P o w e r S y s t e m
2 . T / S
3 . R T C
```

(3) 우(→)방향 Key 누름 : Setting ▶ System ▶ Power System 화면 표시

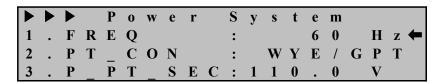
	•	•		P	0	W	e	r		S	y	S	t	e	m			
1	•	F	R	E	Q					:				6	0		H	z 🗲
2		P	T		\mathbf{C}	0	N			:		\mathbf{W}	Y	E	/	G	P	T
3		P	_	P	T	_	S	E	C	:	1	1	0	•	0		V	

"Power System" 화면에서 <mark>좌(←)방향 Ke</mark>y를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

System ▶ Power System ▶ 1. FREQ 설정

계전기가 사용되는 계통의 공칭 주파수를 설정하는 항목입니다.

50Hz와 60Hz 두 가지 항목이 있는데 전력계통이 60Hz이면 60Hz를 선택하시면 됩니다.


계전기가 설치되어 있는 전력 계통 주파수와 계전기 주파수 설정이 다르면 전압 계측 오차를 발생하여 계전기 오동작을 일으킬 수 있습니다.

예로 주파수를 50Hz로 변경하실 경우 1.Power System 화면에서 다음과 같이 하시면 됩니다.

(1) 우(→)방향 Key 누름 : Password 요구 항목 표시

(2) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 1.FREQ 항목 지시 화면 표시

- (3) 우(→)방향 Key 누름 : 커서 (♠)가 1.FREQ 항목 지시 화면표시에서 "60" 값 이 점멸
- (4) <mark>상(↑)</mark> 혹은 하(↓)방향 Key를 눌러 원하는 정정값 설정

(5) 정정값 설정 완료 후 "ENT" Key 누름 ex) 50Hz

	>	▶	▶		P	0	w	e	r		S	y	S	t	e	m			
1			F	R	E	Q					:				5	0		H	z 🗲
2	2		P	T	_	\mathbf{C}	O	N			:		W	Y	E	/	\mathbf{G}	P	T
3	}		P	_	P	T	_	S	E	\mathbf{C}	:	1	1	0	•	0		\mathbf{V}	

System ▶ Power System ▶ 2. PT_CON 설정

Phase측의 PT 1차 결선 형태 및 영상전압 입력 형태를 설정하는 항목으로 WYE/GPT, WYE/INT, DEL/GPT 등 3가지 결선형태를 선택할 수 있습니다.

WYE/GPT는 Phase측의 PT 1차 결선이 Wye이고, 영상전압을 GPT를 통해 입력받는 것을 의미하며, WYE/INT은 Phase측의 PT 1차 결선이 Wye이고, 영상전압을 3상 전압의 영상분을 계산하여 사용하는 것을 의미하며, DEL/GPT는 Phase측의 PT 1차 결선이 Del이고, 영상전압을 GPT를 통해 입력받는 것을 의미합니다.

이 설정에서 영상전압의 입력 형태를 잘못 설정할 경우 계전기에 올바른 영상전압이 입력되지 않아 오부동작을 일으킬 수 있으므로 주의하시기 바랍니다.

PT 결선 형태를 WYE/INT로 변경하려면 1.Power System 화면에서 다음과 같이하시면 됩니다.

(1) <mark>하(↓)방향 Key</mark> 한번 누름 : 커서 (♠)가 2.PT_CON 항목 지시 화면 표시

 ▶ ▶
 Power
 System

 1 . FREQ
 : 60 Hz

 2 . PT_CON
 : WYE/GPT←

 3 . P_PT_SEC:110.0

(2) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

Enter Password: * * * *

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 2.PT_CON 항목 지시 화면 표시

 ▶ ▶
 Power
 System

 1 . FREQ
 : 60 Hz

 2 . PT_CON
 : WYE/GPT←

 3 . P_PT_SEC:110.0

- (4) 우(→)방향 Key 누름 : 커서 (◆)가 2.PT_CON 항목 지시 화면표시에서 "WYE/GPT" 값이 점멸
- (5) <mark>상(↑)방향 Key</mark>를 눌러 "WYE/INT" 값을 설정

(6) 정정값 설정 완료 후 "ENT" Key 누름

```
        ▶
        Power
        System

        1 . FREQ
        : 60 Hz

        2 . PT_CON
        : WYE / INT←

        3 . P_PT_SEC:110.0
```

System ▶ Power System ▶ 3. P_PT_SEC 설정

Phase측의 PT 2차 정격을 설정하는 항목으로 50부터 240까지 0.1단위로 설정 가능하며 보호요소에는 영향을 미치지 않고 단지 고장기록 저장에서 Phase PT의 2차 정격에 대한 정보만 줍니다.

Phase측의 PT 2차 정격을 63.5V로 변경하려면 1.Power System 화면에서 다음과 같이 하시면 됩니다.

(1) <mark>하(↓)방향 Key</mark> 두 번 누름 : 커서 (♣)가 3.P_PT_SEC 항목 지시 화면 표시

```
        ▶
        Power
        System

        1 . FREQ
        : 60 Hz

        2 . PT_CON
        : WYE/GPT

        3 . P_PT_SEC:110.0
```

(2) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

Enter Password: * * * *

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 3.P PT SEC 항목 지시 화면 표시

```
Power System
1 . FREQ : 60 Hz
2 . PT_CON : WYE/GPT
3 . P_PT_SEC:110.0 V
```

- (4) \(\cdot \c
- (5) 하(↓)방향 Key를 눌러 "63.5" 값을 설정
- (6) 정정값 설정 완료 후 "ENT" Key 누름

	>			P	0	w	e	r		S	у	S	t	e	m				
1	•	F	R	E	Q					:				6	0		H	Z	
2	•	P	T	_	\mathbf{C}	O	N			:		W	Y	E	/	\mathbf{G}	P	T	
3	•	P	_	P	T	_	S	\mathbf{E}	C	:		6	3	•	5		\mathbf{V}		←

System ▶ Power System ▶ 4. P_PT_RAT 설정

면 됩니다.

Phase측의 1차 PT비를 설정하는 항목으로 0.1부터 6500까지 0.1단위로 설정 가능하며 보호요소에는 영향을 미치지 않고 단지 계측표시에만 영향을 미칩니다. Phase측의 PT를 $\frac{23k\,V}{\sqrt{3}}/\frac{190\,V}{\sqrt{3}}$ 인 것으로 사용할 경우 계전기에 입력되는 상전압은 110V인데, 1차측 전압값을 23kV로 계측 표시하려면 23kV/110V=209.1로 정정하시

Phase측의 PT Ratio를 209.1로 변경하려면 1.Power System 화면에서 다음과 같이하시면 됩니다.

(1) <mark>하(↓)방향 Key</mark> 세 번 누름 : 커서 (♠)가 4.P PT RAT 항목 지시 화면 표시

 ▶ ▶ Power System

 2 . PT_CON : WYE/GPT

 3 . P_PT_SEC:110.0

 4 . P PT RAT:

(2) 우(→)방향 Key 누름 : Password 요구 항목 표시

Enter Password: * * * *

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 4.P_PT_RAT 항목 지시 화면 표시

Power System
Power System
WYE/GPT
WYY/COPT
PT_SEC:1100.0V
PT_RAT:

- (4) 우(→)방향 Key 누름 : 커서 (←)가 4.P_PT_RAT 항목 지시 화면표시에서 "1.0" 값이 점멸
- (5) <mark>상(↑)방향 Key</mark>를 눌러 "209.1" 값을 설정
- (6) 정정값 설정 완료 후 "ENT" Key 누름

 ▶
 Power
 System

 2. PT_CON
 WYE/GPT

 3. P_PT_SEC:110.0
 V

 4. PRT_RAT:209.1:14

System ▶ Power System ▶ 5. G_PT_SEC 설정

Ground측의 PT 2차 정격을 설정하는 항목으로 50부터 240까지 0.1단위로 설정

가능하며 보호요소에는 영향을 미치지 않고 단지 고장기록 저장에서 Ground PT의 2차 정격에 대한 정보만 줍니다.

Ground측의 PT 2차 정격을 190V로 변경하려면 1.Power System 화면에서 다음과 같이 하시면 됩니다.

(1) <mark>상(↑)방향 Key</mark> 네 번 누름 : 커서 (♠)가 5.G PT SEC 항목 지시 화면 표시

•	>	•		P	0	W	e	r		S	y	S	t	e	m			
3		P	_	P	T	_	S	E	\mathbf{C}	:	1	1	0		0		V	
4		P	_	P	T	_	R	A	T	:				1		0	:	1
5		G		P	T		S	E	C	:	1	1	0		0		V	(

(2) 우(→)방향 Key 누름 : Password 요구 항목 표시

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 5.G PT SEC 항목 지시 화면 표시

	•	•	P	0	W	e	r		S	y	S	t	e	m			
3	•	P _	P	T	_	S	E	C	:	1	1	0	•	0		V	
4		P _	P	T	_	R	A	T	:				1	•	0	:	1
5		G	P	T		S	E	C	:	1	1	0		0		\mathbf{V}	+

- (4) 우(→)방향 Key 누름 : 커서 (◆)가 5.G_PT_SEC 항목 지시 화면표시에서 "110.0" 값이 점멸
- (5) <mark>상(↑)방향 Key</mark>를 눌러 "190.0" 값을 설정
- (6) 정정값 설정 완료 후 "ENT" Key 누름

```
      Power
      System

      3. P_PT_SEC:1100.0

      4. P_PT_RAT:

      1. 0:15

      5. G_PT_SEC:190.0
```

System ▶ Power System ▶ 6. G_PT_RAT 설정

Phase측의 1차 PT비를 설정하는 항목으로 0.1부터 6500까지 0.1단위로 설정 가능하며 보호요소에는 영향을 미치지 않고 단지 계측표시에만 영향을 미칩니다. Ground측의 PT를 $\frac{23k\,V}{\sqrt{3}}/\frac{190\,V}{\sqrt{3}}$ 인 것으로 사용할 경우 지락고장 시 계전기에 입력되는 영상전압은 190V인데, 1차측 전압값을 23kV로 계측 표시하려면 23kV/190V=121.1로 정정하시면 됩니다.

만일 영상전압을 2차 값으로 계측하려면 1.0으로 정정하시면 됩니다. Ground측의 PT Ratio를 121.1로 변경하려면 1.Power System 화면에서 다음과 같이하시면 됩니다.

(1) <mark>상(↑)방향 Key</mark> 세 번 누름 : 커서 (♠)가 6.G PT RAT 항목 지시 화면 표시

```
      ▶ ▶
      Power
      System

      4 . P _ PT _ RAT :
      1 . 0 : 1

      5 . G _ PT _ SEC : 1 1 0 . 0 V

      6 . G _ PT _ RAT :
      1 . 0 : 1 ←
```

(2) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

```
Enter Password: * * * *
```

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 6.G_PT_RAT 항목 지시 화면 표시

```
        ▶ ▶
        Power
        System

        4 . P _ PT _ RAT :
        1 . 0 : 1

        5 . G _ PT _ SEC : 1 1 0 . 0 V

        6 . G _ PT _ RAT :
        1 . 0 : 1 ←
```

- (4) \frac{2}{\left}(→)방향 Key 누름 : 커서 (♣)가 6.G_PT_RAT 항목 지시 화면표시에서 "1.0" 값이 점멸
- (5) <mark>상(↑)방향 Key</mark>를 눌러 "121.1" 값을 설정
- (6) 정정값 설정 완료 후 "ENT" Key 누름

```
        ▶ ▶
        Power
        System

        4 . P _ PT _ RAT :
        1 . 0 : 1

        5 . G _ PT _ SEC : 1 1 0 . 0 V

        6 . G _ PT _ RAT :
        1 . 1 : 1 ←
```

System ▶ Power System ▶ 7. P CT RAT 설정

Phase측의 1차 CT비를 설정하는 항목으로 5부터 30000까지 5단위로 설정 가능하며 보호요소에는 영향을 미치지 않고 단지 계측표시에만 영향을 미칩니다. 본 계전기는 CT 2차 정격이 5A에 맞게 설계되어 있어서 CT를 선정하실 때 꼭 2차가 5A이어야 합니다.

Phase측의 CT가 1000:5인 것으로 사용할 경우 P_CT_RAT 설정에서 1000으로 정정하시면 계전기에 5A 입력 시 1000A로 계측 표시하며, P_CT_RAT 설정에서 5로 정정하시면 계전기에 5A 입력 시 5A로 계측 표시합니다. Phase측의 CT Ratio를 1000으로 변경하려면 1.Power System 화면에서 다음과 같이 하시면 됩니다.

(1) <mark>상(↑)방향 Key</mark> 두 번 누름 : 커서 (♣)가 7.P_CT_RAT 항목 지시 화면 표시

```
        ▶ ▶
        Power
        System

        5. G_PT_SEC:110.0
        V

        6. G_PT_RAT:
        1.0:1

        7. P_CT_RAT:
        5:5
```

(2) 우(→)방향 Key 누름 : Password 요구 항목 표시

```
Enter Password: * * * *
```

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 7.P CT RAT 항목 지시 화면 표시

```
      ▶ ▶
      Power
      System

      5. G_PT_SEC:110.0
      V

      6. G_PT_RAT:
      1.0:1

      7. P_CT_RAT:
      5:5 ←
```

- (4) 우(→)방향 Key 누름 : 커서 (♠)가 7.P_CT_RAT 항목 지시 화면표시에서 "5" 값이 점멸
- (5) 상(↑)방향 Key를 눌러 "1000" 값을 설정
- (6) 정정값 설정 완료 후 "ENT" Key 누름

```
      Power
      System

      5. G_PT_SEC:110.0
      V

      6. G_PT_RAT: 1.0:1
      1.0:1

      7. P_CT_RAT: 1.00.0
      5 ←
```

System ▶ Power System ▶ 8. G_CT_RAT 설정

Ground측의 1차 CT비를 설정하는 항목으로 5부터 30000까지 5단위로 설정 가능하며 보호요소에는 영향을 미치지 않고 단지 계측표시에만 영향을 미칩니다. 본 계전기는 CT 2차 정격이 5A에 맞게 설계되어 있어서 CT를 선정하실 때 꼭 2차가 5A이어야 합니다.

Ground측의 CT가 2000:5인 것으로 사용할 경우 G_CT_RAT 설정에서 2000으로 정정하시면 계전기에 5A 입력 시 2000A로 계측 표시하며, G_CT_RAT 설정에서 5로 정정하시면 계전기에 5A 입력 시 5A로 계측 표시합니다. Ground측의 CT Ratio를 2000으로 변경하려면 1.Power System 화면에서 다음과 같이 하시면 됩니다.

(1) <mark>상(↑)방향 Key</mark> 한 번 누름 : 커서 (♠)가 8.G_CT_RAT 항목 지시 화면 표시

	>	•	•		P	0	w	e	r		S	y	S	t	e	m				
_			G														0		1	
	7	•	P	_	\mathbf{C}	T	_	R	A	T	:					5		:	5	
ı	8		G		C	T		R	A	T	:					5		:	5 4	

(2) 우(→)방향 Key 누름 : Password 요구 항목 표시

```
Enter Password: * * * *
```

(3) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 8.G CT RAT 항목 지시 화면 표시

```
      ▶ ▶ Power System

      6 . G PT RAT:
      1 . 0 : 1

      7 . P CT RAT:
      5 : 5

      8 . G CT RAT:
      5 : 5 ←
```

- (4) <mark>우(→)방향 Key</mark> 누름 : 커서 (♠)가 8.G_CT_RAT 항목 지시 화면표시에서 "5" 값이 점멸
- (5) 상(↑)방향 Key를 눌러 "2000" 값을 설정
- (6) 정정값 설정 완료 후 "ENT" Key 누름

```
      ▶ ▶ Power System

      6 . G PT RAT: 1 . 0 : 1

      7 . P CT RAT: 5 : 5

      8 . G CT RAT: 2 0 0 0 : 5 ←
```

6.3.1.2 System ▶ T/S 설정

T/S Output 설정에서는 8개의 출력 접점에 대해 출력 조건과 출력 접점의 복귀 방법, 출력 접점의 복귀지연시간 등을 설정 할 수 있습니다.

System ▶ T/S ▶ 1. CON 설정

출력 접점을 어떤 조건에서 동작 시킬 것인가를 설정하는 항목입니다. 출력 접점 조건 중 "SYS_ERR"은 계전기에 이상이 발생하였을 때 동작하는 조건 인데, 계전기에 이상이 없을 경우 본래의 접점에서 반대의 접점으로 변합니다. 즉, a접점에 "SYS ERR"을 설정할 경우 정상 상태일 때 b접점으로 되어 있다가

계전기 이상이 발생되면 a접점으로 변합니다.

예로 c접점인 T/S8 출력 접점 (단자번호 : 16 [a접점], 17 [b접점], 15 [Com접점])을 "SYS_ERR"로 설정하시면 계전기에 전원이 투입되지 않은 경우 계전기진단 항목 중 "DC Power Fail"에 해당하므로 16번은 a접점, 17번은 b접점이지만, 계전기에 전원이 투입되면 16번은 b접점, 17번은 a접점으로 변합니다.

출력 접점을 연결하는 종류와 의미는 다음과 같습니다.

Connection	설 명
OFF	접점 사용 안함.
SYS_ERR	System Error일 때 출력.
PROT_OR	모든 계전요소 중 하나라도 동작하면 출력.
IDOC_OR	방향성 순시 과전류 요소가 동작하면 출력.
IDOC_A	방향성 순시 과전류 요소 A상이 동작하면 출력.
IDOC_B	방향성 순시 과전류 요소 B상이 동작하면 출력.
IDOC_C	방향성 순시 과전류 요소 C상이 동작하면 출력.
TDOC_OR	방향성 한시 과전류 요소가 동작하면 출력.
TDOC_A	방향성 한시 과전류 요소 A상이 동작하면 출력.
TDOC_B	방향성 한시 과전류 요소 B상이 동작하면 출력.
TDOC_C	방향성 한시 과전류 요소 C상이 동작하면 출력.
IDGR	방향성 순시 지락과전류 요소 동작하면 출력.
TDGR	방향성 한시 지락과전류 요소 동작하면 출력.
DOC_A_OR	방향성 순시, 한시 과전류 요소 A상이 동작하면 출력.
DOC_B_OR	방향성 순시, 한시 과전류 요소 B상이 동작하면 출력.
DOC_C_OR	방향성 순시, 한시 과전류 요소 C상이 동작하면 출력.
IDOC+TDOC	방향성 순시 과전류 요소와 한시 과전류 요소 중 하나라도 동작하면 출력.
IDOC+IDGR	방향성 순시 과전류 요소와 순시 지락과전류 요소 중 하나라도 동작하면 출력.
IDOC+TDGR	방향성 순시 과전류 요소와 한시 지락과전류 요소 중 하나라도 동작하면 출력.
TDOC+IDGR	방향성 한시 과전류 요소와 순시 지락과전류 요소 중 하나라도 동작하면 출력.
TDOC+TDGR	방향성 한시 과전류 요소와 한시 지락과전류 요소 중 하나라도 동작하면 출력.
IDG_TDGR	방향성 순시 지락과전류 요소와 한시 지락과전류 요소 중 하나라도 동작하면 출력.

<Table 7. T/S Connection Menus>

System ▶ T/S ▶ 2. RST 설정

출력 접점의 복귀 방식을 설정하는 항목입니다.

복귀 방식에는 "Self Mode"와 "Manual Mode"가 있는데 "Self Mode"는 계전 요소

가 복귀 될 때 출력 접점도 자동으로 복귀되는 방식이며, "Manual Mode"는 계전 요소가 복귀되어도 출력 접점은 자동으로 복귀되지 않고 "RESET" Key를 눌러야 만 복귀되는 기능으로 "RESET" Key를 누르기 전까지 출력 접점을 유지시켜 줍니다.

System ▶ T/S ▶ 3. DLY 설정

출력 접점의 복귀 시간을 지연시켜 줄 수 있는 항목입니다.

이 메뉴는 위의 2. RST 설정에서 "Self Mode"일 경우에만 해당되며, "Manual Mode"일 경우에는 설정되지 않습니다.

GD31-AB06의 자동 복귀 시간은 40ms 이하이며, DLY 설정은 0.00~200.00Sec까지 0.01Sec 단위로 설정 가능합니다.

예로, 100ms 이하로 출력 접점을 복귀시키기 위해서는 DLY를 0.06Sec로 설정하시면 되고, 복귀 시간 오차는 100ms 미만 일 경우 ±35ms, 100ms 이상일 경우 ±5% 이내입니다.

◆ T/S Output(출력접점) 설정 방법

예로 T/S1을 IDOC_OR, T/S2를 TDOC_OR, T/S3를 IDG, T/S4를 TDG로 설정하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(2) 우(→)방향 Key 누름 : Setting ▶ System 화면 표시

```
    S y s t e m
    P o w e r S y s t e m
    T / S
    R T C
```

(3) <mark>하(↓)방향 Key</mark> 한번 누름 : 커서 (♣)가 2.T/S 항목 지시 화면 표시

```
▶ S y s t e m
1 . P o w e r S y s t e m
2 . T / S
3 . R T C
```

(4) 우(→)방향 Key 누름 : Setting ▶ System ▶ T/S#01 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#01"에서 "01"이 점멸

 ▶ ▶ T / S # 0 1

 1 . C O N : P R O T _ O R

 2 . R S T : S e l f

 3 . D L Y : 0 . 0 0 s

(5) 우(→)방향 Key 누름 : Setting ▶ System ▶ T/S#01 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#01"에서 "01"이 고정되면서 "←"이 표시됨

		•		T	/	S	#	0	1									
1	•	\mathbf{C}	O	N		:				P	R	O	T	_	0	R		(
2		R	S	T		:				S	e	l	f					
3		D	L	Y		:						0	•	0	0		S	

(6) 우(→)방향 Key 누름 : Password 요구 항목 표시

Enter Password: * * * *

(7) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 1.CON 항목 지시 화면 표시

	•	•		T	/	S	#	0	1									
1		C	\mathbf{o}	N		:				P	R	0	T	_	0	R		←
2	•	R	S	T		:				S	e	l	f					
3	•	D	L	Y		:						0		0	0		S	

- (8) 우(→)방향 Key 누름 : 커서 (♠)가 1.CON 항목 지시 화면표시에서 "PROT OR" 값이 점멸
- (9) 상(↑)방향 Key를 눌러 "IDOC OR" 값을 설정
- (10) 정정값 설정 완료 후 "ENT" Key 누름

 ▶ ▶ T / S # 0 1

 1 . C O N : I D O C _ O R

 2 . R S T : S e I f

 3 . D L Y : 0 . 0 0 s

(11) <mark>좌(←)방향 Key</mark> 누름 : Setting ▶ System ▶ T/S#01 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#01"에서 "01"이 점멸

 ▶ ▶ T / S # 0 1

 1 . C O N : I D O C _ O R

 2 . R S T : S e l f

 3 . D L Y : 0 . 0 0 s

(12) 상(↑)방향 Key 누름 : Setting ▶ System ▶ T/S#02 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#02"에서 "02"가 점멸

(13) <mark>우(→)방향 Key</mark> 누름 : Setting ▶ System ▶ T/S#02 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#02"에서 "02"가 고정되면서 "♣"이 표시됨

 ▶ ▶ T / S # 0 2

 1 . C O N :
 P R O T _ O R

 2 . R S T :
 S e l f

 3 . D L Y :
 0 . 0 0 s

- (14) 우(→)방향 Key 누름 : 커서 (◆)가 1.CON 항목 지시 화면표시에서 "PROT OR" 값이 점멸
- (15) <mark>상(↑)방향 Key</mark>를 눌러 "TDOC_OR" 값을 설정
- (16) 정정값 설정 완료 후 "ENT" Key 누름

T / S # 0 2

1 . C O N : T D O C O R

2 . R S T : S e I f

3 . D L Y : 0 . 0 0 s

(17) 좌(←)방향 Key 누름 : Setting ▶ System ▶ T/S#02 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#02"에서 "02"가 점멸

T / S # 0 2

1 . C O N : T D O C _ O R

2 . R S T : S e l f

3 . D L Y : 0 . 0 0 s

(18) 상(↑)방향 Key 누름 : Setting ▶ System ▶ T/S#03 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#03"에서 "03"이 점멸

 ▶ ▶ T / S # 0 3

 1 . C O N : P R O T _ O R

 2 . R S T : S e l f

 3 . D L Y : 0 . 0 0 s

(19) <mark>우(→)방향 Key</mark> 누름 : Setting ▶ System ▶ T/S#03 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#03"에서 "03"이 고정되면서 "◆"이 표시됨

- (20) 우(→)방향 Key 누름 : 커서 (♠)가 1.CON 항목 지시 화면표시에서 "PROT OR" 값이 점멸
- (21) <mark>상(↑)방향 Ke</mark>y를 눌러 "IDG" 값을 설정
- (22) 정정값 설정 완료 후 "ENT" Key 누름

				T	/	S	#	0	3								
1	•	C	O	N		:					I	D	G				←
2	•	R	S	T		:				S	e	1	f				
3	•	D	L	Y		:						0	•	0	0	5	\$

(23) 좌(←)방향 Key 누름 : Setting ▶ System ▶ T/S#03 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#03"에서 "03"이 점멸

	•	•		T	/	S	#	0	3								
1	•	C	0	N		:					I	D	\mathbf{G}				
2		R	S	T		:				S	e	1	f				
3		D	L	Y		:						0		0	0	S	

(24) <mark>상(↑)방향 Key</mark> 누름 : Setting ▶ System ▶ T/S#04 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#04"에서 "04"가 점멸

	•			T	/	S	#	0	4								
1		\mathbf{C}	O	N		:				P	R	O	T	_	0	R	
2		R	S	T		:				S	e	l	f				
3	•	D	L	Y		:						0		0	0		S

(25) <mark>우(→)방향 Key</mark> 누름 : Setting ▶ System ▶ T/S#04 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#04"에서 "04"가 고정되면서 "♣"이 표시됨

```
      ▶ ▶ T / S # 0 4

      1 . C O N :
      P R O T _ O R

      2 . R S T :
      S e l f

      3 . D L Y :
      0 . 0 0 s
```

- (26) 우(→)방향 Key 누름 : 커서 (◆)가 1.CON 항목 지시 화면표시에서 "PROT OR" 값이 점멸
- (27) <mark>상(↑)방향 Key</mark>를 눌러 "TDG" 값을 설정
- (28) 정정값 설정 완료 후 "ENT" Key 누름

```
      ▶ ▶ T / S # 0 4

      1 . C O N : T D G

      2 . R S T : S e l f

      3 . D L Y : 0 . 0 0 s
```

(29) <mark>좌(←)방향 Key</mark> 누름 : Setting ▶ System ▶ T/S#04 화면 표시 아래 화면에서 첫 번째 줄의 "T/S#04"에서 "04"가 점멸

 ▶ ▶ T / S # 0 4

 1 . C O N : T D G

 2 . R S T : S e l f

 3 . D L Y : 0 . 0 0 s

(30) <mark>좌(←)방향 Key</mark> 누름 : 커서 (♠)가 2.T/S 항목 지시 화면 표시

S y s t e m
1 . P o w e r S y s t e m
2 . T / S
3 . R T C

(31) <u>좌(←)</u>방향 Key 누름 : Setting 화면 표시

Setting

1. System

2. Protection

3. Command

(32) 좌(←) 방향 Key 누름 : 아래의 같은 화면 표시. "No" 항목이 점멸

Save Setting Changes? No

- (33) 상(↑) 혹은 하(↓)방향 Key를 눌러 "Yes"로 변경
- (34) "ENT" Key 누름 : 초기화면 표시

KyongBo GD31-AB06 System OK

6.3.1.3 System ▶ RTC 설정

계전기가 인식하는 시간을 설정하는 항목입니다.

전원이 차단되어도 시간을 기억하며, 년 / 월 / 일, 시 : 분 : 초를 차례대로 입력할 수 있습니다.

계전기의 날짜와 시간을 변경하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

Comma

(2) 우(→)방향 Key 누름 : Setting ▶ System 화면 표시

S y t e m T / S R T C

(3) 하(↓)방향 Key 두번 누름 : 커서 (◆)가 3.RTC 항목 지시 화면 표시

T / S 3 . R T C

(4) 우(→)방향 Key 누름 : Setting ▶ System ▶ RTC 화면 표시

RTC Y Y Y Y / M M / D D / H H : M M : S S2 0 0 6 / 0 7 / 2 0 / 1 7 : 5 2 :

(5) 우(→)방향 Key 누름 : Password 요구 항목 표시

(6) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 :

R T C Y Y Y Y / M M / D D / H H : M M : 2 0 0 6 / 0 7 / 2 0 / 1 7 : 5 2 :

- (7) 우(→)방향 Key 누름 : "2006/07/20/17:52:41"에서 "06" 값이 점멸 예로, "2006/08/10/12:30:20"로 설정할 경우
- (8) 우(→)방향 Key 누름 : "2006/07/20/17:52:41"에서 "07" 값이 점멸
- (9) 상(↑)방향 Key를 눌러 "08"로 설정
- (10) 우(→)방향 Key 누름 : "2006/08/20/17:52:41"에서 "20" 값이 점멸
- (11) 하(↓)방향 Key를 눌러 "10"으로 설정
- (12) 우(→)방향 Key 누름 : "2006/08/10/17:52:41"에서 "17" 값이 점멸

- (13) 하(↓)방향 Key를 눌러 "12"로 설정
- (14) 우(→)방향 Key 누름 : "2006/08/10/12:52:41"에서 "52" 값이 점멸
- (15) 하(↓)방향 Key를 눌러 "30"으로 설정
- (16) 우(→)방향 Key 누름 : "2006/08/10/12:30:41"에서 "41" 값이 점멸
- (17) 하(↓)방향 Key를 눌러 "20"로 설정
- (18) 정정값 설정 완료 후 "ENT" Key 누름

```
        P P R T C

        Y Y Y Y / M M / D D / H H : M M : S S

        2 0 0 6 / 0 8 / 1 0 / 1 2 : 3 0 : 2 0
```

RTC 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환 됩니다.

6.3.1.4 System ▶ Waveform Record 설정

Waveform Record 관련 설정을 하는 항목으로 Waveform Record Type, Waveform Record Trigger Position, Waveform Record Trigger Condition을 설정할 수 있습니다.

System ▶ Waveform Record ▶ 1. TYPE 설정

Waveform의 Record 형태를 설정하는 항목입니다.

GD31-AB06의 Waveform의 저장 형태는 8×60, 4×120, 2×240 등 3가지가 있습니다. 8×60은 60Cycle의 고장 파형을 8개까지 저장할 수 있으며, 4×120은 120Cycle의 고장 파형을 4개까지 저장할 수 있으며, 2×240은 240Cycle의 고장 파형을 2개까지 저장할 수 있습니다.

예로, 사고 발생 시점 전, 후로 각각 1초 동안의 사고 파형을 원하시면 4×120의 저장 형태를 설정하시면 됩니다.

System ▶ Waveform Record ▶ 2. TPOS 설정

Waveform을 기록할 고장 파형의 시점을 설정하는 항목으로 0%부터 99%까지 1%단위로 설정할 수 있습니다.

TPOS를 60%로 설정하면 Trigger되는 시점으로 Trigger 전 60%, Trigger 후 40%를 저장합니다.

만약 Trigger 전, 후의 동일한 시간을 저장하고 싶을 경우 TPOS를 50%로 설정하면 됩니다.

System ▶ Waveform Record ▶ 3. TSRC 설정

Waveform을 어떤 조건에서 저장할 지를 설정하는 항목으로 TRIP, PKP,

TRIP+EXT, PKP+TRIP, EXT H L, EXT L H 등 총 6가지가 있습니다.

TRIP은 계전 요소에 의해 Trip이 발생할 때 저장하는 것이고 PKP는 계전 요소가 Pickup될 때, TRIP+EXT는 계전 요소에 의해 Trip이 발생하거나 혹은 D/I3 External Trigger 입력 접점이 ON에서 OFF, OFF에서 ON될 때, PKP+TRIP은 계전 요소가 Pickup되거나 Trip이 발생될 때, EXT_H_L은 D/I3 External Trigger 입력 접점이 ON에서 OFF될 때, EXT_L_H는 D/I3 External Trigger 입력 접점이 OFF에서 ON될 때 저장하는 것입니다.

고장 파형을 저장하고 싶을 때에는 TSRC를 PKP+TRIP으로 설정하시고, 차단기의 개방 상태를 전후로 파형을 저장하고 싶으시거나 평상시의 선로의 파형을 저장하고 싶으실 때에는 TSRC를 EXT L H, EXT H L로 설정하시면 됩니다.

◆ Waveform Record 설정 방법

예로 Waveform Type을 2×240, Trigger Position을 80%, Trigger Source를 PKP+TRIP으로 설정하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(2) 우(→)방향 Key 누름 : Setting ▶ System 화면 표시

```
    ▶ S y s t e m
    1 . P o w e r S y s t e m
    2 . T / S
    3 . R T C
```

(3) 하(↓)방향 Key 세 번 누름 : 커서 (◆)가 4.Waveform Record 항목 지시 화면 표시

```
System

2. T/S

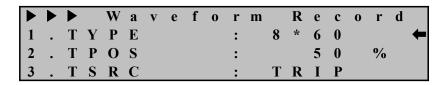
3. RTC

4. Waveform Record
```

(4) 우(→)방향 Key 누름 : Setting ▶ System ▶ Waveform Record 화면 표시

 ▶ ▶ Waveform Record

 1 . TYPE
 : 8 * 6 0


 2 . TPOS
 : 5 0 %

 3 . TSRC
 : TRIP

(5) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

Enter Password: * * * *

(6) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 1.TYPE 항목 지시 화면 표시

- (7) <mark>우(→)방향 K</mark>ey 누름 : 커서 (♠)가 1.TYPE 항목 지시 화면표시에서 "8*60" 값이 점멸
- (8) 하(↓)방향 Key를 눌러 "2*240" 값을 설정
- (9) 정정값 설정 완료 후 "ENT" Key 누름

•	•			W	a	V	e	f	0	r	m		R	e	c	0	r	d	
1		T	Y	P	E					:		2	*	2	4	0			←
2		T	P	0	S					:				5	0		%		
3		T	S	R	\mathbf{C}					:		T	R	I	P				

(10) 하(↓)방향 Key를 누름 : 커서 (♣)가 2.TPOS 항목 지시 화면 표시

				W	a	V	e	f	0	r	m		R	e	c	0	r	d	
1		T	Y	P	E					:		2	*	2	4	0			
2	•	T	P	0	S					:				5	0		%		(
3		T	S	R	\mathbf{C}					:		T	R	I	P				

- (11) <mark>우(→)방향 Key</mark> 누름 : 커서 (♠)가 2.TPOS 항목 지시 화면표시에서 "50" 값이 점멸
- (12) 상(↑)방향 Key를 눌러 "80" 값을 설정
- (13) 정정값 설정 완료 후 "ENT" Key 누름

	•	•		W	a	V	e	f	0	r	m		R	e	c	0	r	d	
1		T	Y	P	E					:		2	*	2	4	0			
2		T	P	0	S					:				8	0		%		←
3	•	T	S	R	C					:		T	R	I	P				

(14) 하(↓)방향 Key를 누름 : 커서 (♠)가 3.TSRC 항목 지시 화면 표시

				W	a	V	e	f	0	r	m		R	e	c	0	r	d
1		T	Y	P	E					:		2	*	2	4	0		
2		T	P	0	S					:				8	0		%	
3		T	S	R	C					:		T	R	I	P			←

- (15) 우(→)방향 Key 누름 : 커서 (♠)가 3.TSRC 항목 지시 화면표시에서 "TRIP" 값이 점멸
- (16) 하(↓)방향 Key를 눌러 "PKP+TRIP" 값을 설정
- (17) 정정값 설정 완료 후 "ENT" Key 누름

				W	a	v	e	f	0	r	m		R	e	c	0	r	d	
1	•	T	Y	P	\mathbf{E}					:		2	*	2	4	0			
2	•	T	P	0	S					:				8	0		%		
3		T	S	R	C					:	P	K	P	+	T	R	Ι	P	←

Waveform Record 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.1.5 System ▶ COM 설정

RS485 통신 설정을 하는 항목으로써 Address, 통신 속도, Protocol 종류를 설정할 수 있습니다.

System에서 5. COM 항목을 선택하면 아래와 같은 화면이 나옵니다.

COM 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

System ▶ COM ▶ 1. SLV_ADDR 설정

Slave Address를 설정하는 항목으로 Protocol을 ModBus로 사용할 경우에는 1부터 255까지 설정가능하고, DNP3.0으로 사용할 경우에는 1부터 65534까지 설정할 수 있습니다.

System ▶ COM ▶ 2. BPS 설정

통신 속도를 설정하는 항목으로 300, 1200, 2400, 4800, 9600, 19200, 38400 중에 하나를 설정할 수 있습니다.

System ▶ COM ▶ 3. PROTOCOL 설정

프로토콜의 종류를 설정하는 항목으로 DNP3.0과 ModBus 중에 하나를 설정할 수 있습니다.

Protocol을 변경한 다음에는 꼭 계전기 전원을 Off → On해야 Protocol이 변경됩니다.

6.3.1.6 System ▶ DNP 설정

DNP3.0 Protocol 관련 Parameter를 설정하는 항목입니다.

System에서 6. DNP 항목을 선택하면 아래와 같은 화면이 나옵니다.

				D	N	P													
1		T	X	_	D	E	L	A	Y	:					0		m	S	←
2	•	L	_	\mathbf{C}	F	M				:	N	Ī	e	v	e	r			
3		L	_	R	E	T	R	Y		:					0				

다른 Parameter를 설정하려면, <mark>상(↑)이나 하(↓)방향 Key</mark>를 눌러 원하시는 항목에 커서 (♣)를 이동하시면 됩니다.

DNP 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환 됩니다.

DNP3 00	╢ 사용되는	파라메타들은	다음과	같습니다.

파라메타	범 위	설정 단위	기본값	설 명
TX-DELAY	0 ~ 65000	1 ms	0	Tx Delay
L_CFM	Never, Always, SomeTime		Never	Link Confirm
L_RETRY	0 ~ 5	1	0	Link Retry
L_TO	1 ~ 65000	1 ms	1	Link Timeout
SBO_TO	1 ~ 65000	1 ms	1	SBO Timeout
TIME_INT	0 ~ 65000	1 min	0	Write Time Interval, 0이면 기능 Off
COLD_RST	Enabled, Disabled		Disabled	Cold Restart

<Table 8. DNP3.0 Parameter Menus>

6.3.1.7 System ▶ Password 설정

Password 설정을 변경하는 항목입니다.

Setting을 바꾸기 위해서는 Password를 반드시 거쳐야 하며, 이는 중요한 설정 요소 변경 시 보안을 유지하기 위한 것 입니다. 제품 출하 시 Password는 "0000"으로 입력되어 있으며, 암호 변경 시 0부터 9까지의 수를 이용하여 4자리로 변경할 수 있습니다.

System에서 7. Password 항목을 선택하면 아래와 같은 화면이 나옵니다.

Password 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.2 Protection 설정

Protection 항목에는 IDOCR, TDOCR, IDGR, TDGR 등 보호 기능을 수행하기 위한 항목들로 구성되어 있습니다.

Protection의 화면은 아래와 같습니다.

Protection 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 Setting의 초기 화면으로 전환됩니다.

6.3.2.1 Protection ▶ IDOCR 설정

방향성 순시 과전류 요소를 설정하는 항목으로 Pick-Up 설정 범위는 $1.0A \sim 100A$ 로 0.5A 단위로 설정 가능하고, 방향 설정은 정방향, 역방향, 양방향으로 3가지 설정이 가능합니다.

방향 설정에서 양방향으로 설정할 경우 순시 과전류 요소(50)로 동작을 합니다. 그리고 최대 감도 위상각(MTA)은 기준 선간전압에 대해 -90° ~ +90°까지 설정 가능합니다.

또한, 계전기는 전압 Memory 기능이 내장되어 있어 PT Fuse 고장 등으로 인해 전압이 상실되어 방향판단을 하지 못하는 상황이 발생되어도 1초 동안은 기억된 전압을 사용하여 방향을 판단합니다.

하지만, 1초가 경과한 뒤에도 전압이 없을 경우 전류 크기로만 동작할 수 있도록 Volt Loss Blocking 설정이 있습니다.

Volt Loss Blocking 설정을 Disabled로 하면 전압 상실 시 과전류 요소로 동작하며, Enabled로 하면 전압 상실 시 IDOCR의 동작을 Blocking 합니다.

시간 설정은 순시와 정한시 중 한 가지를 설정할 수 있습니다.

IDOCR에서 설정할 수 있는 세부 항목은 다음과 같습니다.

항 목	범 위	정정 단위	기본값	설 명
FUNCTION	Disabled, Enabled	-	Enabled	요소 사용 여부
DIR	Forward, Reverse, Disabled	-	Forward	방향 설정
MODE	Inst, DT	-	Inst	순시, 정한시 설정
PICK-UP	1.0 ~ 100.0A	0.5A	50A	순시 Pick-Up값
DT-TIME	$0.03 \sim 60.00 \text{Sec}$	0.01Sec	-	정한시 시간 설정
MTA	-90° ~ +90°	1°	+30°	최대 감도 위상각 설정
VLOS_BLK	Disabled, Enabled	-	Disabled	전압 상실 시 Blocking 여부 설정
EXT_BLK	No, Yes	-	No	D/I2 Trip Blocking 입력접점이 활성화되면 IDOCR 동작을 억제

<Table 9. IDOCR Parameter Menus>


주의) VLOS_BLK에서 Disabled로 설정을 하면 전압 상실되고 1초가 지난 뒤 전압이 계속 없으면 전류의 크기로만 동작을 하는 단순 과전류 요소로 동작을 하며, Enabled로 설정을 하면 전압 상실되고 1초가 지난 뒤 전압이 없으면 동작을 하지 않습니다.

♦ IDOCR 설정 방법

예로 IDOCR의 Pickup 값을 15A, Reverse, 정한시 0.05Sec로 설정하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

(2) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♠)가 2.Protection 항목 지시 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(3) 우(→)방향 Key 누름 : Setting ▶ Protection 화면 표시

Protection

1 . I D O C R

2 . T D O C R

3 . I D G R

(4) 우(→)방향 Key 누름 : Setting ▶ Protection ▶ IDOCR 화면 표시

▶ ▶ I D O C R
1 . F U N C T I O N : E n a b l e d
2 . D I R : F o r w a r d
3 . M O D E : I n s t

(5) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♠)가 2.DIR 항목 지시 화면 표시

(6) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

Enter Password: * * * *

(7) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 2.DIR 항목 지시 화면 표시

 ▶ ▶ I D O C R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : F o r w a r d

 3 . M O D E : I n s t

- (8) <mark>우(→)방향 Key</mark> 누름 : 커서 (♠)가 2.DIR 항목 지시 화면표시에서 "Forward" 값이 점멸
- (9) 하(↓)방향 Key를 눌러 "Reverse" 값을 설정
- (10) 정정값 설정 완료 후 "ENT" Key 누름

(11) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 3.MODE 항목 지시 화면 표시

- (12) 우(→)방향 Key 누름 : 커서 (◆)가 3.MODE 항목 지시 화면표시에서 "Inst" 값이 점멸
- (13) <mark>상(↑)방향 Key</mark>를 눌러 "DT" 값을 설정
- (14) 정정값 설정 완료 후 "ENT" Key 누름

(15) 하(↓)방향 Key를 누름 : 커서 (♠)가 4.PICKUP 항목 지시 화면 표시

- (16) <mark>우(→)방향 Key</mark> 누름 : 커서 (♠)가 4.PICKUP 항목 지시 화면표시에서 "1.0" 값이 점멸
- (17) <mark>상(↑)방향 Key</mark>를 눌러 "15.0" 값을 설정
- (18) 정정값 설정 완료 후 "ENT" Key 누름

```
      ▶ ▶ I D O C R

      2 . D I R
      : R e v e r s e

      3 . M O D E
      : D T

      4 . P I C K U P
      : 1 5 . 0 A
```

(19) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 5.DT TIME 항목 지시 화면 표시

```
      ▶ ▶ I D O C R

      3 . M O D E
      : D T

      4 . P I C K U P
      : 1 5 . 0 A

      5 . D T _ T I M E
      : 0 . 0 3 s
```

- (20) 우(→)방향 Key 누름 : 커서 (◆)가 5.DT_TIME 항목 지시 화면표시에서 "0.03" 값이 점멸
- (21) 상(↑)방향 Key를 눌러 "0.05" 값을 설정
- (22) 정정값 설정 완료 후 "ENT" Key 누름

```
      ▶ ▶ I D O C R

      3 . M O D E
      : D T

      4 . P I C K U P
      : 1 5 . 0 A

      5 . D T _ T I M E
      : 0 . 0 5 s
```

IDOCR 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.2.2 Protection ▶ TDOCR 설정

방향성 한시 과전류 요소를 설정하는 항목으로 Pick-Up 설정 범위는 $0.2A \sim 12.5A$ 로 0.1A 단위로 설정 가능하고 8개의 한시 시간 특성을 설정할 수 있으며, 나머지 설정은 위의 IDOCR과 동일합니다.

TDOCR에서	석정학	수	인느	세부	항모은	다음자	간습니다

항 목	범 위	정정 단위	기본값	설 명
FUNCTION	Disabled, Enabled	-	Disabled	요소 사용 여부
DIR	Forward, Reverse, Disabled	-	-	방향 설정
CURVE	NI, VI, EI, LI, KNI, KDNI, KVI, DT	-	-	한시 시간 특성 설정
PICK-UP	$0.2 \sim 12.5A$	0.1A	-	한시 Pick-Up값
T_DIAL	0.05 ~ 10.00	0.05	-	시간 배율 설정
DT-TIME	$0.03 \sim 60.00 \text{Sec}$	0.01Sec	-	정한시 시간 설정
MTA	-90° ~ +90°	1°	-	최대 감도 위상각 설정
VLOS_BLK	Disabled, Enabled	-	-	전압 상실 시 Blocking 여부 설정
EXT_BLK	No, Yes	-	-	D/I2 Trip Blocking 입력접점이 활성화되면 TOCR 동작을 억제


<Table 10. TDOCR Parameter Menus>

◆ TDOCR 설정 방법

예로 TDOCR의 Pickup 값을 10A, Forward, 경보유도형 강반한시(KVI), Time Dial 1.5로 설정하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

(2) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♠)가 2.Protection 항목 지시 화면 표시

Setting

1. System

2. Protection

3. Command

(3) 우(→)방향 Key 누름 : Setting ▶ Protection 화면 표시

Protection

1. IDOCR

2. TDOCR

3. IDGR

(4) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♣)가 2.TDOCR 항목 지시 화면 표시

(5) 우(→)방향 Key 누름 : Setting ▶ Protection ▶ TDOCR 화면 표시

(6) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♣)가 2.DIR 항목 지시 화면 표시

 ▶ ▶ T D O C R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : R e v e r s e

 3 . C U R V E : K N I

(7) <mark>우(→)방향 Key</mark> 누름 : Password 요구 항목 표시

Enter Password: * * * *

(8) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 2.DIR 항목 지시 화면 표시

 ▶ ▶
 T D O C R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : R e v e r s e

 3 . C U R V E : K N I

(9) 우(→)방향 Key 누름 : 커서 (♠)가 2.DIR 항목 지시 화면표시에서 "Reverse"

값이 점멸

- (10) 하(↓)방향 **Key**를 눌러 "Forward" 값을 설정
- (11) 정정값 설정 완료 후 "ENT" Key 누름

 ▶ ▶ T D O C R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : F o r w a r d

 3 . C U R V E : K N I

(12) 하(↓)방향 Key를 누름 : 커서 (♣)가 3.CURVE 항목 지시 화면 표시

 ▶ ▶
 T D O C R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : F o r w a r d

 3 . C U R V E : K N I ←

- (13) <mark>우(→)방향 K</mark>ey 누름 : 커서 (♣)가 3.CURVE 항목 지시 화면표시에서 "KNI" 값이 점멸
- (14) <mark>상(↑)방향 Key</mark>를 눌러 "KVI" 값을 설정
- (15) 정정값 설정 완료 후 "ENT" Key 누름

 ▶ ▶
 T D O C R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : F o r w a r d

 3 . C U R V E : K V I ←

(16) 하(↓)방향 Key를 누름 : 커서 (♠)가 4.PICKUP 항목 지시 화면 표시

 ▶ ▶ T D O C R

 2 . D I R
 : F o r w a r d

 3 . C U R V E
 : K V I

 4 . P I C K U P
 : 0 . 2 A

- (17) <mark>우(→)방향 Key</mark> 누름 : 커서 (♠)가 4.PICKUP 항목 지시 화면표시에서 "0.2" 값이 점멸
- (18) 상(↑)방향 Key를 눌러 "10.0" 값을 설정
- (19) 정정값 설정 완료 후 "ENT" Key 누름

 ▶ ▶ T D O C R

 2 . D I R
 : F o r w a r d

 3 . C U R V E
 : K V I

 4 . P I C K U P
 : 1 0 . 0 A

(20) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 5.T DIAL 항목 지시 화면 표시

		•		T	D	0	C	R							
3		C	U	R	V	E			:		K	\mathbf{V}	I		
4	•	P	I	\mathbf{C}	K	U	P		:	1	0		0	A	
5	•	T		D	I	A	L		:	0		0	5		←

- (21) 우(→)방향 Key 누름 : 커서 (◆)가 5.T_DIAL 항목 지시 화면표시에서 "0.05" 값이 점멸
- (22) 상(↑)방향 Key를 눌러 "1.50" 값을 설정
- (23) 정정값 설정 완료 후 "ENT" Key 누름

	>			T	D	O	C	R							
3	•	\mathbf{C}	U	R	V	E			:		K	\mathbf{V}	I		
4	•	P	I	\mathbf{C}	K	U	P		:	1	0		0	A	
5	•	T		D	I	A	L		:	1	•	5	0		(

TDOCR 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.2.3 Protection ▶ IDGR 설정

방향성 순시 지락과전류 요소를 설정하는 항목으로 Pick-Up 설정 범위는 0.5A ~ 50A로 0.1A 단위로 설정 가능하고, 방향 설정은 정방향, 역방향, 양방향으로 3가지 설정이 가능합니다.

방향 설정에서 양방향으로 설정할 경우 순시 지락 과전류 요소(50N)로 동작을합니다. 그리고 기준 위상각은 영상전압과 극성전류, 영상전압+극성전류 등 3가지로 설정할 수 있으며, 최대 감도 위상각(MTA)은 기준 위상각을 영상전압, 영상전압+극성전류로 설정했을 경우에만 -90°~ +90°까지 설정 가능합니다.

동작시간은 순시와 정한시 시간 특성을 설정할 수 있습니다.

IDGR에서 설정할 수 있는 세부 항목은 다음과 같습니다.

항 목	범 위	정정 단위	기본값	설 명
FUNCTION	Disabled, Enabled	-	Enabled	요소 사용 여부
DIR	Forward, Reverse, Disabled	-	Forward	방향 설정
MODE	Inst, DT	-	Inst	순시, 정한시 설정
PICK-UP	$0.5 \sim 50.0A$	0.1A	5A	순시 Pick-Up값
DT-TIME	$0.03 \sim 60.00 \text{Sec}$	0.01Sec	-	정한시 시간 설정
POL	Voltage, Current, Dual	-	Dual	기준 위상각 설정
VOLT_PKP	5 ~ 50V	1V	50V	영상전압 Pickup치
MTA	-90° ~ +90°	1°	-60°	최대 감도 위상각 설정
EXT_BLK	No, Yes	-	No	D/I2 Trip Blocking 입력접점이 활성화되면 IDGR 동작을 억제

<Table 11. IDGR Parameter Menus>

◆ IDGR 설정 방법

예로 IDGR의 Pickup 값을 30A, 방향은 Disabled, 순시로 설정하기 위해서는 계전 기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

(2) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♠)가 2.Protection 항목 지시 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(3) 우(→)방향 Key 누름 : Setting ▶ Protection 화면 표시

```
Protection

1. IDOCR

2. TDOCR

3. IDGR
```

(4) <mark>하(↓)방향 Key</mark> 두 번 누름 : 커서 (♠)가 3.IDGR 항목 지시 화면 표시

```
Protection
1 . I D O C R
2 . T D O C R
3 . I D G R
```

(5) 우(→)방향 Key 누름 : Setting ▶ Protection ▶ IDGR 화면 표시

```
    ▶ ▶ I D G R
    1 . F U N C T I O N : E n a b l e d
    2 . D I R : F o r w a r d
    3 . M O D E : D T
```

(6) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♣)가 2.DIR 항목 지시 화면 표시

```
      ▶ ▶ I D G R

      1 . F U N C T I O N : E n a b l e d

      2 . D I R : F o r w a r d

      3 . M O D E : D T
```

(7) 우(→)방향 Key 누름 : Password 요구 항목 표시

Enter Password: * * * *

(8) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 2.DIR 항목 지시 화면 표시

- (9) \frac{1}{2}(→)방향 Key 누름 : 커서 (♠)가 2.DIR 항목 지시 화면표시에서 "Forward" 값이 점멸
- (10) 하(↓)방향 Key를 눌러 "Disabled" 값을 설정
- (11) 정정값 설정 완료 후 "ENT" Key 누름

▶ ▶ I D G R
 1 . F U N C T I O N : E n a b l e d
 2 . D I R : D i s a b l e d ←
 3 . M O D E : D T

(12) 하(↓)방향 Key를 누름 : 커서 (♠)가 3.MODE 항목 지시 화면 표시

 ▶ ▶ I D G R

 1 . F U N C T I O N : E n a b l e d

 2 . D I R : D i s a b l e d

 3 . M O D E : D T

- (13) 우(→)방향 Key 누름 : 커서 (♠)가 3.MODE 항목 지시 화면표시에서 "DT" 값이 점멸
- (14) 상(↑)방향 Key를 눌러 "Inst" 값을 설정
- (15) 정정값 설정 완료 후 "ENT" Key 누름

▶ ▶ I D G R
 1 . F U N C T I O N : E n a b l e d
 2 . D I R : D i s a b l e d
 3 . M O D E : I n s t

(16) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 4.PICKUP 항목 지시 화면 표시

 ▶ ▶ I D G R

 2 . D I R
 : D i s a b l e d

 3 . M O D E
 : D T

 4 . P I C K U P
 : 0 . 5 A

- (17) 우(→)방향 Key 누름 : 커서 (◆)가 4.PICKUP 항목 지시 화면표시에서 "0.5" 값이 점멸
- (18) <mark>상(↑)방향 Key</mark>를 눌러 "30.0" 값을 설정
- (19) 정정값 설정 완료 후 "ENT" Key 누름

	>	•		Ι	D	G	R										
2		D	I	R				:	D	i	S	a	b	1	e	d	
3		M	O	D	E			:			D	T					
4	•	P	I	C	K	U	P	:		3	0		0		A		←

IDGR 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.2.4 Protection ▶ TDGR 설정

방향성 한시 지락과전류 요소를 설정하는 항목으로 Pick-Up 설정 범위는 0.1A $\sim 5A$ 로 0.1A 단위로 설정 가능하고 8개의 한시 시간 특성을 설정할 수 있으며, 나머지 설정은 위의 IDGR과 동일합니다.

TDGR에서 설정할 수 있는 세부 항목은 다음과 같습니다.

항 목	범 위	정정 단위	기본값	설 명
FUNCTION	Disabled, Enabled	-	Disabled	요소 사용 여부
DIR	Forward, Reverse, Disabled	-	-	방향 설정
CURVE	NI, VI, EI, LI, KNI, KDNI, KVI, DT	-	-	한시 시간 특성 설정
PICK-UP	$0.1 \sim 5.0$ A	0.1A	-	한시 Pickup치
T_DIAL	0.05 ~ 10.00	0.05	-	시간 배율 설정
DT-TIME	$0.03 \sim 60.00 \text{Sec}$	0.01Sec	-	정한시 시간 설정
POL	Voltage, Current, Dual	-	-	기준 위상각 설정
VOLT_PKP	5 ~ 50V	1V	-	영상전압 Pickup치
MTA	-90° ~ +90°	1°	-	최대 감도 위상각 설정
EXT_BLK	No, Yes	-	-	D/I2 Trip Blocking 입력접점이 활성화되면 TDGR 동작을 억제

<Table 12. TDGR Parameter Menus>

◆ TDGR 설정 방법

예로 TDGR의 Pickup 값을 1A, 방향은 Reverse, 기준극성은 Voltage, MTA -60°, 영상전압 Pickup 값을 20V, 경보유도형 강반한시(KVI), Time Dial 2.5로 설정하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

(2) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♣)가 2.Protection 항목 지시 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(3) 우(→)방향 Key 누름 : Setting ▶ Protection 화면 표시

```
    Protection
    I D O C R
    T D O C R
    I D G R
```

(4) <mark>상(↑)방향 Key</mark> 한 번 누름 : 커서 (♣)가 4.TDGR 항목 지시 화면 표시

```
Protection

2. TDOCR

3. IDGR

4. TDGR
```

(5) 우(→)방향 Key 누름 : Setting ▶ Protection ▶ TDGR 화면 표시

```
    ▶ ▶ T D G R
    1 . F U N C T I O N : E n a b l e d
    2 . D I R : D i s a b l e d
    3 . C U R V E : N I
```

(6) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♠)가 2.DIR 항목 지시 화면 표시

```
▶ ▶ T D G R
1 . F U N C T I O N : E n a b l e d
2 . D I R : D i s a b l e d ←
3 . C U R V E : N I
```

(7) 우(→)방향 Key 누름 : Password 요구 항목 표시

Enter Password: * * * *

(8) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 2.DIR 항목 지시 화면 표시

- (10) 하(↓)방향 Key를 눌러 "Reverse" 값을 설정
- (11) 정정값 설정 완료 후 "ENT" Key 누름

▶ ▶ T D G R
1 . F U N C T I O N : E n a b l e d
2 . D I R : R e v e r s e ←
3 . C U R V E : N I

(12) 하(↓)방향 Key를 누름 : 커서 (♣)가 3.CURVE 항목 지시 화면 표시

▶ ▶ T D G R
1 . F U N C T I O N : E n a b l e d
2 . D I R : R e v e r s e
3 . C U R V E : N I

- (13) 우(→)방향 Key 누름 : 커서 (♠)가 3.CURVE 항목 지시 화면표시에서 "NI" 값이 점멸
- (14) <mark>상(↑)방향 Key</mark>를 눌러 "KVI" 값을 설정
- (15) 정정값 설정 완료 후 "ENT" Key 누름

▶ ▶ T D G R
 1 . F U N C T I O N : E n a b l e d
 2 . D I R : R e v e r s e
 3 . C U R V E : K V I ←

(16) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 4.PICKUP 항목 지시 화면 표시

▶ ▶ T D G R
 2 . D I R : R e v e r s e
 3 . C U R V E : K V I
 4 . P I C K U P : 0 . 1 A ←

- (17) 우(→)방향 Key 누름 : 커서 (◆)가 4.PICKUP 항목 지시 화면표시에서 "0.1" 값이 점멸
- (18) 하(↓)방향 Key를 눌러 "1.0" 값을 설정
- (19) 정정값 설정 완료 후 "ENT" Key 누름

		•		T	D	G	R									
2	•	D	I	R				:	R	e	V	e	r	S	e	
3	•	C	U	R	\mathbf{V}	E		:			K	\mathbf{V}	I			
4		P	I	C	K	U	P	:			1	•	0		A	←

(20) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 5.T DIAL 항목 지시 화면 표시

```
TDGR
. C U R V E
. PICKUP
                   1.0
                          A
    D I A L : 1 0 . 0 0
```

- (21) 우(→)방향 Key 누름 : 커서 (◆)가 5.T DIAL 항목 지시 화면표시에서 "10.00" 값이 점멸
- (22) 하(↓)방향 Key를 눌러 "2.50" 값을 설정
- (23) 정정값 설정 완료 후 "ENT" Key 누름

```
TDGR
. CURVE
                  K V I
  ICKUP
    D I A L
```

(24) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 6.POL 항목 지시 화면 표시

```
TDGR
     I C K U P
                      0 . 1
                             A
      DIAL
                    2 . 5 0
6 . P O L
                  Current 🗲
```

- (25) 우(→)방향 Key 누름 : 커서 (←)가 6.POL 항목 지시 화면표시에서 "Current" 값이 점멸
- (26) 하(↓)방향 Key를 눌러 "Voltage" 값을 설정
- (27) 정정값 설정 완료 후 "ENT" Key 누름

```
TDGR
. PICKUP
                 0 . 1
                       A
T DIAL
                2 . 5 0
               Voltage 🗲
```

(28) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 7.VOLT PKP 항목 지시 화면 표시

- (29) 우(→)방향 Key 누름 : 커서 (◆)가 7.VOLT_PKP 항목 지시 화면표시에서 "50" 값이 점멸
- (30) 하(↓)방향 Key를 눌러 "25" 값을 설정
- (31) 정정값 설정 완료 후 "ENT" Key 누름

	•			T	D	G	R											
5		T	_	D	I	A	L			:	2		5	0				
6	•	P	0	L						:	\mathbf{V}	0	l	t	a	g	e	
7	•	V	0	L	T	_	P	K	P	:				5		V		+

(32) <mark>하(↓)방향 Key</mark>를 누름 : 커서 (♠)가 8.MTA 항목 지시 화면 표시

	>	•		T	D	G	R												
6		P	O	L						:	V	7	0	l	t	a	g	e	
7		V	O	L	T	_	P	K	P	:				2	5		V		
8		M	T	A						:				0			0	•	(

- (33) 우(→)방향 Key 누름 : 커서 (◆)가 8.MTA 항목 지시 화면표시에서 "0°" 값 이 점멸
- (34) 하(↓)방향 Key를 눌러 "-60°" 값을 설정
- (35) 정정값 설정 완료 후 "ENT" Key 누름

```
        ▶ ▶
        T D G R

        6 . P O L
        : V o 1 t a g e

        7 . V O L T _ P K P :
        2 5 V

        8 . M T A
        : - 6 0 °
```

TDGR 화면에서 <mark>좌(←)방향 K</mark>ey를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.3 Command

Command 항목에는 Event Data 삭제, Waveform Data 삭제, 출력 접점 Test, 전면 Panel Test 등의 항목들로 구성되어 있습니다.

6.3.3.1 Command ▶ Event Clear

저장된 Event Data를 삭제할 수 있는 항목입니다.

Event Data를 삭제하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하 시면 됩니다. 혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

(2) 상(↑)방향 Key 한 번 누름 : 커서 (♣)가 3.Command 항목 지시 화면 표시

```
S e t t i n g
S y s t e m
P r o t e c t i o n
C o m m a n d
```

(3) 우(→)방향 Key 누름 : Setting ▶ Command 화면 표시

```
Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test
```

(4) 우(→)방향 Key 누름 : Password 요구 항목 표시

```
Enter Password: * * * *
```

(5) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 1.Event Clear 항목 지시 화면 표시

```
C o m m a n d
E v e n t C l e a r
W a v e f o r m C l e a r
C o n t a c t O U T T e s t
```

(6) 우(→)방향 Key 누름 : 화면표시에서 "No" 값이 점멸

```
Event Clear
Clear All Events?
No
```

- (7) 하(↓)방향 Key를 눌러 "Yes" 값을 설정
- (8) 정정값 설정 완료 후 "ENT" Key 누름

```
Event Clear
Clear All Events?

All Cleared.
```

(9) Setting ▶ Command 화면 표시로 자동 전환

Command 화면에서 <mark>좌(←)방향 K</mark>ey를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.3.2 Command ▶ Waveform Clear

저장된 Waveform Data를 삭제할 수 있는 항목입니다.

Waveform Data를 삭제하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

(2) <mark>상(↑)방향 Key</mark> 한 번 누름 : 커서 (♣)가 3.Command 항목 지시 화면 표시

```
S e t t i n g
S y s t e m
P r o t e c t i o n
C o m m a n d
```

(3) 우(→)방향 Key 누름 : Setting ▶ Command 화면 표시

```
Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test
```

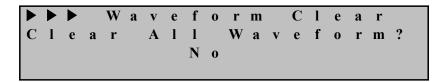
(4) <mark>하(↓)방향 Key</mark> 한번 누름 : 커서 (♠)가 2.Waveform Clear 항목 지시화면 표시

Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test


(5) 우(→)방향 Key 누름 : Password 요구 항목 표시

Enter Password: * * * *

(6) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 2.Waveform Clear 항목 지시 화면 표시

(7) 우(→)방향 Key 누름 : 화면표시에서 "No" 값이 점멸

- (8) 하(↓)방향 Key를 눌러 "Yes" 값을 설정
- (9) 정정값 설정 완료 후 "ENT" Key 누름

```
Waveform Clear
Clear All Waveform?

All Cleared.
```

(10) Setting ▶ Command 화면 표시로 자동 전환

Command 화면에서 <mark>좌(←)방향 K</mark>ey를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.3.3 Command ▶ Contact OUT Test

출력 접점을 임의로 활성화(Ene) 또는 비활성화(DeE) 시켜서 접점이 정상적으

로 동작하는지 확인할 수 있는 항목입니다.

Contact OUT Test를 하게 되면 현재 Contact OUT Test 중임을 사용자가 알 수 있도록 계전기 전면부의 "RUN" LED가 점멸을 합니다.

또한, Contact OUT Test 중일 때에는 T/S Output에 설정한 값은 모두 초기화되어 원래의 접점 형태로 됩니다.

즉, T/S#8(c 접점)이 "SYS_ERR"로 설정되어 있으면 계전기가 정상적일 때 T/S#8의 a 접점은 "b 접점", b 접점은 "a 접점"으로 되어 있지만, Contact OUT Test 시 T/S#8의 a 접점은 "a 접점", b 접점은 "b 접점"으로 변합니다.

접점이 활성화(Ene) 되었을 경우에는 a접점은 b접점으로, b접점은 a접점으로 변하며, 비활성화(DeE) 되었을 경우에는 본래의 접점 형태로 돌아옵니다.

정상적으로 접점이 동작하는 상태라면 "Ene" 또는 "DeE"로 바뀔 때 마다 "딸깍" 하는 소리가 납니다.

만약 소리가 나지 않는다면, 저항 측정기를 이용하여 "Ene"에서 "DeE"로 변할 때 저항값을 측정하고 변화시켰을 때 저항값이 바뀌지 않는다면 출력 접점이 고장 난 상태이므로 출력 접점을 교체해야 합니다.

T/S#01, T/S#02 접점의 출력을 Test 하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Key</mark>를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(2) <mark>상(↑)방향 Key</mark> 한 번 누름 : 커서 (♠)가 3.Command 항목 지시 화면 표시

```
S e t t i n g
S y s t e m
P r o t e c t i o n
C o m m a n d
```

(3) 우(→)방향 Key 누름 : Setting ▶ Command 화면 표시

```
Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test
```

(4) 하(↓)방향 Key 두 번 누름 : 커서 (♣)가 3.Contact OUT Test 항목 지시화면 표시

```
Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test
```

(5) 우(→)방향 Key 누름 : Setting ▶ Command ▶ Contact OUT Test 화면 표시

	▶	•		C	0	n	t	a	c	t	0	U	T		T	e	S	t
1		T	/	S	#	0	1						:	D	e	E		←
2	•	T	/	S	#	0	2						:	D	e	E		
3	•	T	/	S	#	0	3						:	D	e	E		

(6) 우(→)방향 Key 누름 : Password 요구 항목 표시

```
Enter Password: * * * *
```

(7) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 1.T/S#01 항목 지시 화면 표시

```
Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test
```

(8) 우(→)방향 Key 누름 : 화면표시에서 "DeE" 값이 점멸

```
      ▶ ▶ C o n t a c t
      O U T T e s t

      1 . T / S # 0 1
      : D e E

      2 . T / S # 0 2
      : D e E

      3 . T / S # 0 3
      : D e E
```

(9) 하(↓)방향 Key 누름 : 화면표시에서 "Ene" 값이 점멸

```
      ▶ ▶
      C o n t a c t
      O U T
      T e s t

      1 . T / S # 0 1
      : E n e
      ←

      2 . T / S # 0 2
      : D e E

      3 . T / S # 0 3
      : D e E
```

(10) T/S#01 접점이 출력되면 <mark>좌(←)방향 Key</mark>를 누름

```
      ▶ ▶ Contact OUT Test

      1 . T / S # 0 1

      2 . T / S # 0 2

      3 . T / S # 0 3

: D e E
: D e E
```

(11) <mark>하(↓)방향 Key</mark> 한 번 누름 : 커서 (♠)가 2.T/S#02 항목 지시 화면 표시

		•		C	0	n	t	a	c	t	0	U	T		T	e	S	t
1		T	/	S	#	0	1						:	D	e	E		
2	•	T	/	S	#	0	2						:	D	e	E		+
3		T	/	S	#	0	3						:	D	e	E		

(12) 우(→)방향 Key 누름 : 화면표시에서 "DeE" 값이 점멸

	>	•		C	0	n	t	a	c	t	O	U	T		T	e	S	t
1	•	T	/	S	#	0	1						:	D	e	E		
2	•	T	/	S	#	0	2						:	D	e	E		+
3	•	T	/	S	#	0	3						:	D	e	E		

(13) <mark>하(↓)방향 Key</mark> 누름 : 화면표시에서 "Ene" 값이 점멸

	•	•		C	0	n	t	a	c	t	O	U	T		T	e	S	t
1	•	T	/	S	#	0	1						:	D	e	E		
2	•	T	/	S	#	0	2						:	E	n	e		+
3		T	/	S	#	0	3						:	D	e	E		

(14) T/S#02 접점이 출력되면 <u>좌(←)</u>방향 Key를 누름

		•		C	0	n	t	a	c	t	O	U	T		T	e	S	t
1		T	/	S	#	0	1						:	D	e	E		
2		T	/	S	#	0	2						:	D	e	E		+
3		T	/	S	#	0	3						:	D	e	E		

Contact OUT Test 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

6.3.3.4 Command ▶ Panel Test

계전기 전면부의 LCD와 LED의 이상 유무를 점검할 수 있는 항목입니다.

Panel Test 하기 위해서는 계전기 초기화면에서 다음과 같이 Key를 조작하시면 됩니다.

혹시, 계전기 LCD에 초기화면이 표시되지 않으면 <mark>좌(←)방향 Ke</mark>y를 3번 정도 누르시면 됩니다.

(1) "SET" Key 누름 : Setting 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(2) 상(↑)방향 Key 한 번 누름 : 커서 (♣)가 3.Command 항목 지시 화면 표시

```
Setting

1. System

2. Protection

3. Command
```

(3) 우(→)방향 Key 누름 : Setting ▶ Command 화면 표시

```
Command

1. Event Clear

2. Waveform Clear

3. Contact OUT Test
```

(4) 상(↑)방향 Key 한 번 누름 : 커서 (♣)가 4.Panel Test 항목 지시 화면 표시

```
Command

Command

Contact

UT Test

Panel Test
```

(5) 우(→)방향 Key 누름 : Password 요구 항목 표시

```
Enter Password: * * * *
```

(6) 계전기 초기 암호값이 "0000"으로 입력되어 있으므로 그냥 "ENT" Key 누름 : 커서 (♣)가 4.Panel Test 항목 지시 화면 표시

```
Command

Command

Contact
OUT
Test

Panel Test
```

(7) <mark>우(→)방향 Key</mark> 누름 : Power LED를 제외한 모든 LED와 LCD에 "TEST" 문자 3회 점멸 후 Setting ▶ Command 화면 표시로 자동 전환

```
        ▶
        ▶
        P a n e l
        T e s t

        T E S T T E S T T E S T T E S T T E S T
        T E S T T E S T

        T E S T T E S T T E S T T E S T
        T E S T T E S T
```

```
    C o m m a n d
    W a v e f o r m C l e a r
    C o n t a c t O U T T e s t
    P a n e l T e s t
```

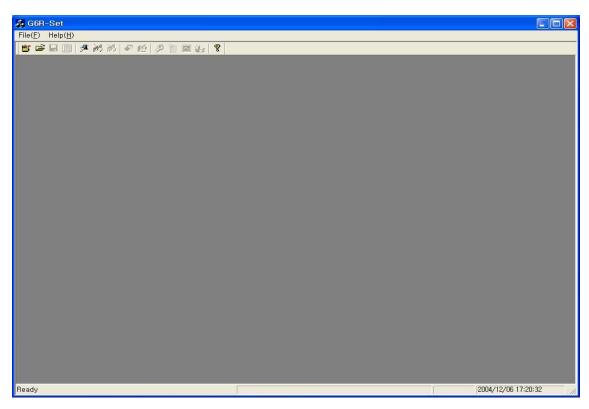
Command 화면에서 <mark>좌(←)방향 Key</mark>를 누르면 이 메뉴에서 빠져나와 상위 메뉴로 전환됩니다.

만약 Power LED 외 다른 LED가 점멸하지 않는다면 해당 LED를 수리해야 합니다.

					_	
				1. FRE	Q	50Hz or 60Hz
				2. PT_0	CON	WYE/GPT or WYE/INT or DEL/GPT
			1	3. P_P7	T_SEC	50.0 ~ 240.0V (0.1V Step)
			1. Power	4. P_P7	T_RAT	0.1 ~ 6500 : 1 (0.1 Step)
			System	5. G_P	T_SEC	50.0 ~ 240.0V (0.1V Step)
			- J	6. G_P	Γ_RAT	0.1 ~ 6500 : 1 (0.1 Step)
				7. P_C	Γ_RAT	5 ~ 30000 : 5 (5 Step)
				8. G_C	T_RAT	5 ~ 30000 : 5 (5 Step)
						OFF, SYS_ERR, PROT_OR,
						IDOC_OR, IDOC_A, IDOC_B,
						IDOC_C, TDOC_OR, TDOC_A,
						TDOC_B, TDOC_C, IDG, TDG,
				T/S#01	1. CON	
			2. T/S	~		DOC_C_OR, IDOC+TDOC,
				T/S#08		IDOC+IDG, IDOC+TDG,
		1.				TDOC+IDG, TDOC+TDG,
						IDG+TDG
초	a				2. RST	Self or Manual
기	Setting	-			3. DLY	0.00 ~ 200.00Sec (0.01Sec)
화 면	(SET)	System	3. RTC			YYYY/MM/DD/HH:MM:SS
						년 / 월 / 일 / 시 : 분 : 초
			4.	1. TYP		8×60, 4×120, 2×240
			Waveform	2. TPO	S	0 ~ 99% (1% Step)
			Record	3. TSR	С	TRIP, EXT_L_H, EXT_H_L, TRIP+EXT
						PKP, PKP+TRIP
				1. SLV	_ADDR	1 ~ 65534
			5. COM	2. BPS		300 ~ 38400
				3. PRO	TOCOL	ModBus or DNP3.0
				1. TX_	DELAY	0 ~ 65000ms (1ms Step)
				2. L_Cl	FM	Never / Always / SomeTime
				3. L_RI	ETRY	0 ~ 5 (1 Step)
			6. DNP	4. L_T0	Э	0 ~ 65000ms (1ms Step)
				5. SBO	_TO	0 ~ 65000ms (1ms Step)
				6. TIM	E_INT	0 ~ 65000ms (1ms Step)
				7. COL	D_RST	Enabled or Disabled
			7.			
			Password			New Password : ****

				1. FUNCTION	Enabled or Disabled
				2. DIR	Forward, Reverse, Disabled
				3. MODE	Inst or DT
			1. IDOCR	4. PICKUP	$1.0 \sim 100 \text{A} \ (0.5 \text{A Step})$
			1. IDOCK	5. DT_TIME	$0.03 \sim 60.00 \text{Sec} \ (0.01 \text{Sec Step})$
				6. MTA	-90° ~ +90° (1° Step)
				7. VLOS_BLK	Enabled or Disabled
				8. EXT_BLK	Yes or No
		İ		1. FUNCTION	Enabled or Disabled
				2. DIR	Forward, Reverse, Disabled
				3. CURVE	NI, VI, EI, LI, DT, KNI, KDNI, KVI
			2	4. PICKUP	$0.2 \sim 12.5 \text{A} \ (0.1 \text{A Step})$
			2.	5. T DIAL	0.05 ~ 10.00 (0.05 Step)
			TDOCR	6. DT TIME	$0.03 \sim 60.00 \text{Sec} \ (0.01 \text{Sec} \ \text{Step})$
				7. MTA	-90° ~ +90° (1° Step)
				8. VLOS BLK	Enabled or Disabled
				9. EXT BLK	Yes or No
		2.		1. FUNCTION	Enabled or Disabled
		Protection		2. DIR	Forward, Reverse, Disabled
		Tiotection		3. MODE	Inst or DT
				4. PICKUP	$0.5 \sim 50A \text{ (0.1A Step)}$
			3. IDGR	5. DT TIME	$0.03 \sim 60.00$ Sec (0.01Sec Step)
초			J. IDGK	6. POL	Voltage, Current, Dual
				7. VOLT PKP	$5 \sim 50 \text{V (1V Step)}$
기	Setting			8. MTA	-90° ~ +90° (1° Step)
화	(SET)			9. EXT BLK	Yes or No
면				1. FUNCTION	Enabled or Disabled
				2. DIR	Forward, Reverse, Disabled
				3. CURVE	NI, VI, EI, LI, DT, KNI, KDNI, KVI
				4. PICKUP	$0.1 \sim 5A (0.1A \text{ Step})$
				5. T DIAL	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$
			4. TDGR	6. DT TIME	$0.03 \sim 10.00 \text{ (0.03 Step)}$ $0.03 \sim 60.00\text{Sec (0.01Sec Step)}$
				7. POL	Voltage, Current, Dual
				8. VOLT PKP	$5 \sim 50 \text{V (1V Step)}$
				9. MTA	$-90^{\circ} \sim +90^{\circ} \text{ (1° Step)}$
				10. EXT BLK	` 1/
			1	10. EAI_DLK	Yes or No
			1.		-
			Event		Clear All Event? Yes or No
			Clear		
		3.	2.		
			Waveform		Clear All Waveform? Yes or No
					2.24 7 11 (1470101111. 105 01 110
		Command	Clear		
			3.		Cont OUT#01 ~ 08 Test
			Contact		
			OUT Test		Ene or DeE
			4.		
			Panel Test		
			ranci iest		

<Table 13. Setting Menus>


7. PC Software (Setting Tool, Waveform Evaluation Tool)

PC Software는 본 계전기(GD31-AB06)를 편리하게 사용할 수 있도록 설계된 Application Software 입니다. PC Software는 계전기 설정, Event Data 확인, Waveform Data 확인 및 Comtrade File 변환, 전류 계측 확인, 계전기 동작 상태 확인, 자기진단 상태를 확인 할 수 있는 G6R-Set과 Waveform Data를 Comtrade File로 변환시킨 것을 Graphic으로 파형을 확인하고 분석할 수 있는 G6R-Eval로 구성되어 있습니다.

7.1 Setting Tool (G6R-Set)

GD31-AB06 본체 자체의 Menu에서 각종 정정치 및 시스템 구성과 관련된 설정을 하는 것과 마찬가지로 본 G6R-Set을 사용하여 현장에서 Notebook을 이용하여 일괄적으로 설정을 변경할 수 있습니다. Setting Tool을 사용할 경우 Notebook의 RS-232C 통신 Port와 계전기 전면부의 RS-232 통신 Port를 연결하시면 됩니다. RS232C 통신에서 사용하는 Protocol은 ModBus이며, RS-485 통신에서도 Setting Tool을 사용할 수 있습니다. 계전기에서 설정을 변경할 경우 각 항목별로 정정작업을 반복하여야 하나 Setting Tool을 사용할 경우 일괄적으로 정정을 할 수 있고, 작업내용을 파일로 저장할 수 있어 동일 작업수행 시 정정을 편리하게 할수 있습니다.

아래 그림은 G6R-Set을 실행하였을 때의 초기 화면입니다.

<Figure 13. Setting Tool 초기화면>

7.1.1 프로그램 Menu

G6R-Set의 기본 Menu는 크게 통신 Port Setting Menu, File 입출력 Menu, 계전기 관련 Setting Menu 등으로 나뉘어져 있으며 자세한 내용은 다음의 표를 참고하시기 바랍니다.

Program Menu	
A Comm	컴퓨터의 통신 Port를 설정할 수 있는 메뉴입니다.
Comm	▶ 7.1.3 통신 Port 설정 참조
Connect	계전기와 G6R-Set의 Port 간 통신을 연결하고 초기화 합니다.
M Disconnect	통신 Port 연결을 닫습니다.
B Device Selecting	G6R-Set과 통신할 계전기를 선택할 수 있는 Menu입니다.
⊘ Open	저장한 Setting File을 Load 합니다.
Save	Setting(System, Protection) Page일 경우 작업내용을 저장하며
Save	Event 또는 Waveform일 경우 해당 내용을 저장합니다.
Report	Setting(System, Protection) 내용을 Text 파일로 저장합니다.
≝ PC→Relay	System, Protection의 설정 변경 내용을 계전기로 전송합니다.
	계전기의 System, Protection 설정내용을 G6R-Set으로 일괄
₽ Relay→PC	Upload하며, Event 또는 Waveform Page에서는 해당 Data를
	Upload 합니다.
	System, Protection의 설정을 변경할 수 있는 Page로 이동합니다.
Event	Event Data를 확인할 수 있는 Page로 이동합니다.
■Waveform	Waveform Data를 확인할 수 있는 Page로 이동합니다.
(Le) Annitan	전압/전류 계측, 자기진단 상태, 접점 입출력, 보호 요소 동작
Monitor	상태를 확인할 수 있는 Page로 이동합니다.
Exit(X)	프로그램을 종료 합니다.

<Table 14. Setting Tool Program Menus>

7.1.2 보호 계전기 선택 (Device Selecting)

G6R-Set은 하나의 프로그램으로 6종의 계전기를 제어하는 프로그램으로 제어할 계전기를 선택해야 합니다. Device Selecting(♥)버튼을 누르면 아래의 그림과 같이 계전기를 선택하는 창이 뜨며 원격 제어할 계전기를 선택합니다. GD31-AB06과 통신하기 위해서는 GD31-AB06을 선택하시고 "OK" 버튼을 누르시면 됩니다.

<Figure 14. Device Selecting>

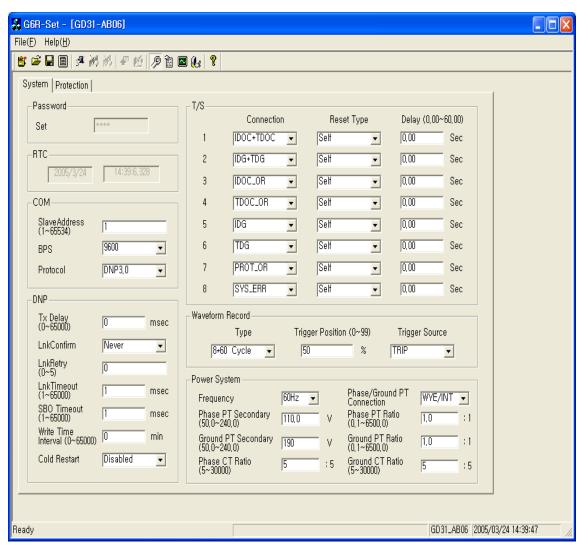
7.1.3 통신 Port 설정 (Communication Port Configuration)

이 기능은 다른 장치에 의해 통신 Port를 사용할 수 없을 경우 다른 Com-Port를 선택하여 사용할 수 있으며, 통신 Port는 15개의 Port중 하나를 선택하시면 됩니다. 또한 RS-232C 통신 Protocol이 ModBus를 사용하므로, RS-485 통신으로 Setting Tool을 사용할 수 있습니다. 만약 RS-485 통신으로 Setting Tool을 이용하고자한다면 먼저 계전기의 Address를 설정하고, Notebook의 RS-232C Connector에 RS-485C Convertor를 연결하고 계전기의 RS-485단자(49, 51, 53번)에 연결하면됩니다.

<Figure 15. Communication Port Configuration>

• Commun	ication										
Dont	COM1	~ COM15									
Port	Comm	nmunication Port									
	0	RS-232C 통신 시 사용									
ADDR	1~255	RS-485C 통신 시 사용									
	RS-485	C를 위한 Slave Address (ModBus Protocol)									

7.1.4 정정치 변경 화면


G6R-Set Menu의 Setting(戊戌)을 누르면 계전기의 System 구성과 Protection 항목을 설정할 수 있는 화면이 나타납니다. 여기에서 Relay→PC(杞戌)를 누르면 계전기에 저장되어 있는 System 구성과 Protection 설정 내용을 확인할 수 있으며, Setting 화면에서 내용을 수정한 다음 PC→Relay(戊戌)를 누르면 계전기에 변경된 설정으로 저장이 됩니다. 또한 Save(Ⅰ)를 누르면 현재 Setting 화면에 있는 내용을 (*.ppj) File로 저장할 수 있으며, Open(戊戌)을 누르면 저장된 File(*.ppj)을 Load할 수 있습니다. Report(□)를 누르면 계전기 정정 내용을 Text File(*.txt)로 저장이 됩니다.

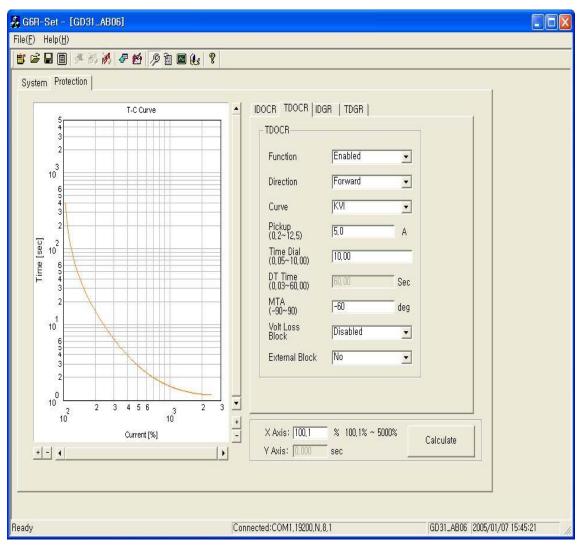
7.1.4.1 System Configuration

System 설정 화면에서는 계전기의 Protocol, RTC, T/S Output, 고장파형, 전력시스템 등 일반적인 시스템 항목에 대한 설정을 합니다.

RTC를 변경하고자 할 경우에는 PC의 시간을 변경한 다음 Setting Tool의 PC→ Relay(♠) 아이콘을 누르시면 됩니다.

이용항목에 대한 설명은 계전기의 메뉴 구성 화면과 동일하므로 "6.정정 및 표시 방법" 부분을 참조하시기 바랍니다.

<Figure 16. GD31-AB06 System Configuration>


7.1.4.2 Protection Setting

Protection 설정 화면에서는 계전기의 보호계전 요소와 관련된 항목들을 설정합니다.

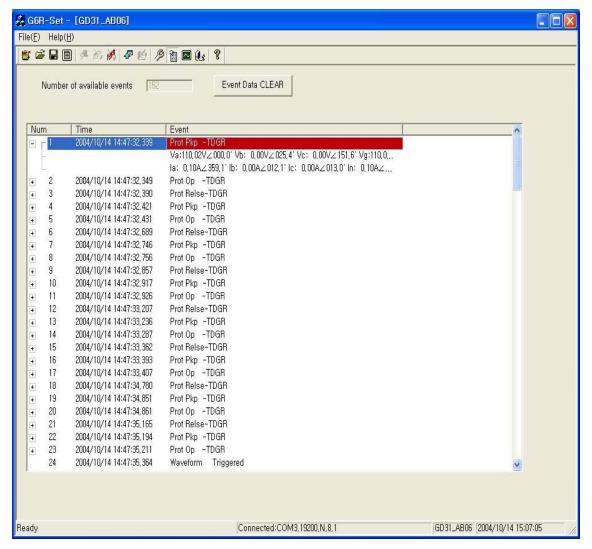
설정 항목은 크게 IDOC(방향성 순시 과전류 계전요소), TDOC(방향성 한시 과전류 계전요소), IDGR(방향성 순시 지락과전류 계전요소), TDGR(방향성 한시 지락과전류 계전요소) 등으로 구성되어 있습니다.

좌측의 그래프는 설정한 동작시간 특성을 그래프로 나타낸 것이며, 반한시 설정을 하고 입력 전류에 대한 동작시간을 알아보고자 할 경우에는 아래에 있는 동작시간 계산기를 이용하시면 편리하게 동작시간을 알 수 있습니다.

각 보호 요소의 설명은 계전기 메뉴 구성화면과 동일하므로 "6.정정 및 표시방법" 부분을 참조하시기 바랍니다.

<Figure 17. GD31-AB06 Protection Setting>

91 / 110

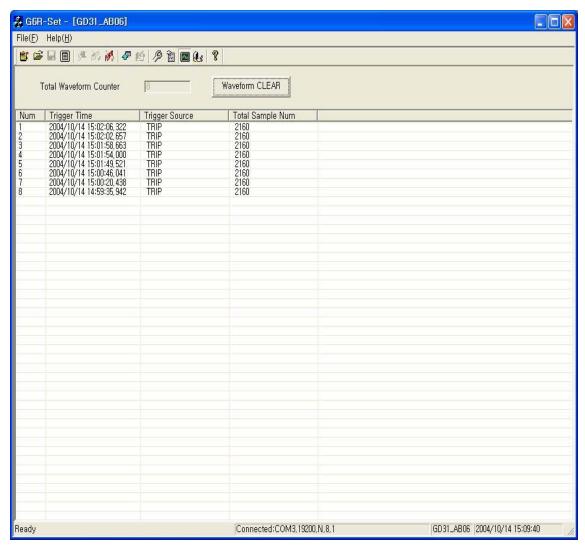

7.1.5 Event 화면

G6R-Set Menu의 Event() j를 누르면 Event Data를 확인할 수 있는 화면이 나타 납니다. Event 화면에서는 계전기에 저장된 Event Data를 확인, 저장할 수 있으며 계전기에 저장된 Event Data를 삭제할 수 있습니다.

Relay→PC(♣)를 누르면 계전기의 비휘발성 메모리(EEPROM)에 저장되어 있는 Event Data를 가져와서 화면에 표시하고, 이 상태에서 Save(♣)를 누르면 Event Data를 *.txt 파일로 저장합니다.

Event Data 표시에서 숫자가 큰 것일수록 최근의 Event Data이며, "Event Data Clear"를 누르면 계전기에 저장되어 있는 Event Data를 삭제합니다.

Event 내용은 계전기의 메뉴 구성 화면과 동일하므로 "4.4 Event 기록"을 참조하시기 바랍니다.


<Figure 18. GD31-AB06 Event>

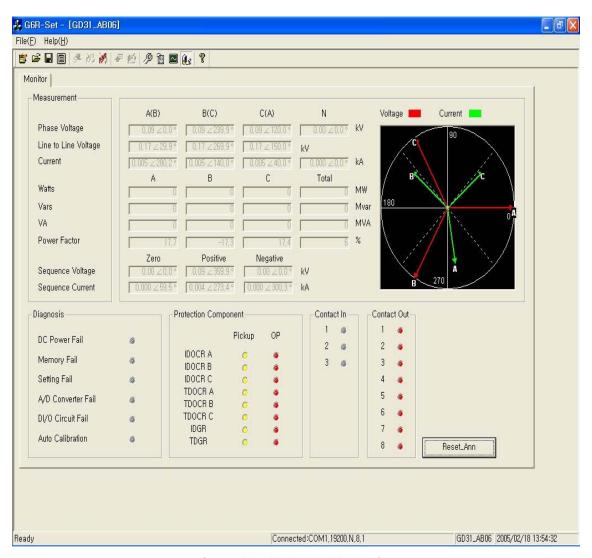
7.1.6 Waveform 화면

G6R-Set Menu의 Waveform(圖)을 누르면 Waveform Data를 확인할 수 있는 화면이 나타납니다. Waveform 화면은 계전기에 저장된 고장 기록의 정보를 표시하고, 원하는 고장 기록 Data를 Comtrade File로 가져올 수 있으며 저장된 기록을 삭제할 수 있습니다. Relay→PC(❤)를 누르면 계전기에 저장되어 있는 Waveform Data에 대한 정보가 표시되며, 원하는 정보를 마우스로 선택하여 Save(□)를 누르면 Waveform Data를 PC로 Comtrade File로 변환하여 저장합니다.

Comtrade 파일은 *.cfg 파일과 *.dat 파일로 구성되는데, 이 두 가지 파일은 확장 자만 다르고 같은 파일명으로 저장됩니다. 이 두 개의 File은 고장파형 분석프로 그램 (G6R-Eval)에서 이용됩니다.

Waveform Data 표시에서 숫자가 큰 것일수록 가장 최근의 사고 기록이며, "Waveform CLEAR"를 누르면 계전기에 저장되어 있는 사고 기록을 삭제합니다.

<Figure 19. GD31-AB06 Waveform>

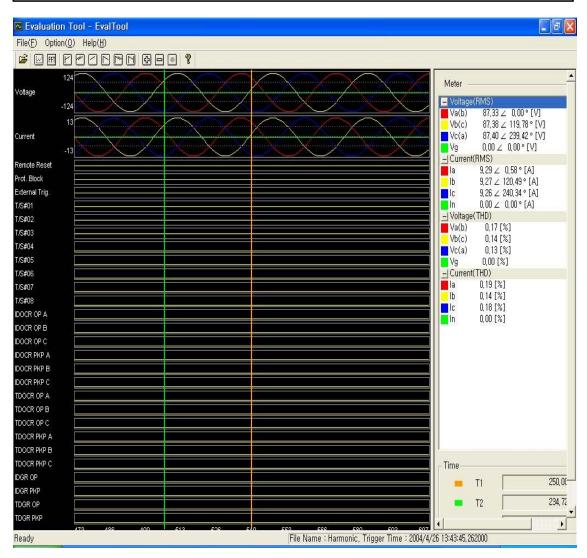

7.1.7 Monitor 화면

G6R-Set 메뉴의 Monitor(健)를 누르면 계전기를 Monitoring 할 수 있는 화면이 나타납니다.

Monitor 화면은 계전기에 입력되는 전압/전류의 크기 및 위상, 대칭분(정상, 역상, 영상) 전압/전류 크기 및 위상, 각 상의 유효/무효/피상전력 크기, 각 상의 역률, 자기진단 상태, 보호계전요소 동작상태, 입출력 접점 상태 등을 실시간으로 표시합니다.

그리고 전압 크기 계측에서 "Phase Voltage"는 상전압을 의미하며, "Line to Line Voltage"는 선간전압을 의미합니다.

또한, 계전기에 입력되는 전압/전류를 보다 쉽게 확인할 수 있도록 Monitor 화면 우측에 Graph로 전압/전류를 표시합니다.



<Figure 20. GD31-AB06 Monitor>

7.2 Waveform Evaluation Tool (G6R-Eval)

G6R-Eval은 Setting Tool을 이용하여 만들어진 Waveform Data Comtrade File을 Graphical하게 화면으로 볼 수 있는 Tool입니다. Waveform Data와 Event Data의기록 순서 등을 통해서 사고 원인과 사고의 진행 상황을 분석하고 그 결과를 토대로 정확한 고장 분석을 가능하게 합니다. 사고 파형에는 전압/전류의 크기 및위상, 왜형율, 각 계전 요소 동작 상태, 입출력 접점의 상태, 시간 등이 표시됩니다.

• 출력 파형					
각상의 전류/전압 계측	실효치 및 위상				
각상의 고조파 함유율	선택 지점의 고조파 함유율 계산(기본파~15조파)				
각 계전요소, Remote Reset, Protection Block, External Trigger, 출력 접점.					

<Figure 21. GD31-AB06 Fault Evaluation Tool>

7.2.1 기능 설명

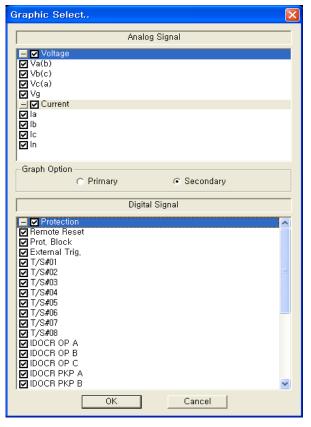
• I	Program Menu						
=	Open	계전기의 Waveform Data Comtrade(*.dat) File을 Load합니다.					
 Graph		Comtrade 파일에 저장된 파형 중 사용자가 원하는 파형을 선택 하는 기능입니다.					
FFT	Harmonic List	전압/전류의 고조파(1~15조파)를 계산하여 사용자에게 보여 줍니다.					
	First	파형의 처음으로 이동합니다.					
	Double Left	현재 보이는 화면크기만큼 왼쪽으로 이동합니다.					
M O	☑ Left 현재 화면크기의 반만큼 왼쪽으로 이동합니다.						
V E	▶ Right	현재 보이는 화면크기만큼 오른쪽으로 이동합니다.					
	Double Right	현재 화면크기의 반만큼 오른쪽으로 이동합니다.					
	▶ End	파형의 마지막으로 이동합니다.					
Z O O M	⊕ In	파형을 확대하여 보여줍니다.					
	Out	파형을 축소하여 보여줍니다.					
	• All	파형을 한 화면에 전부 보여줍니다.					
Exit(X)		프로그램을 종료 합니다.					

<Table 15. Fault Evaluation Tool Program Menus>

7.2.2 Meter

G6R-Eval은 Comtrade File로 저장된 전압/전류 파형의 실효치와 위상을 표시합니다. 전압/전류 실효치와 위상을 보시려면 원하는 파형에 마우스 포인터를 가져가신 다음 마우스 왼쪽 버튼을 누르시면 황색 실선(│)이 그려지면서 그 지점의계측값을 표시합니다.

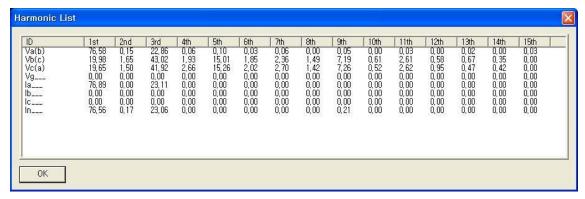
오른쪽 마우스 버튼을 누르시면 녹색 실선(│)이 나타나며, Time 표시에 황색 실선에 대한 시간(T1)과 녹색 실선에 대한 시간(T2)을 표시합니다.


그리고 두 실선 사이의 시간차는 Delta T에 자동으로 계산하여 표시합니다.

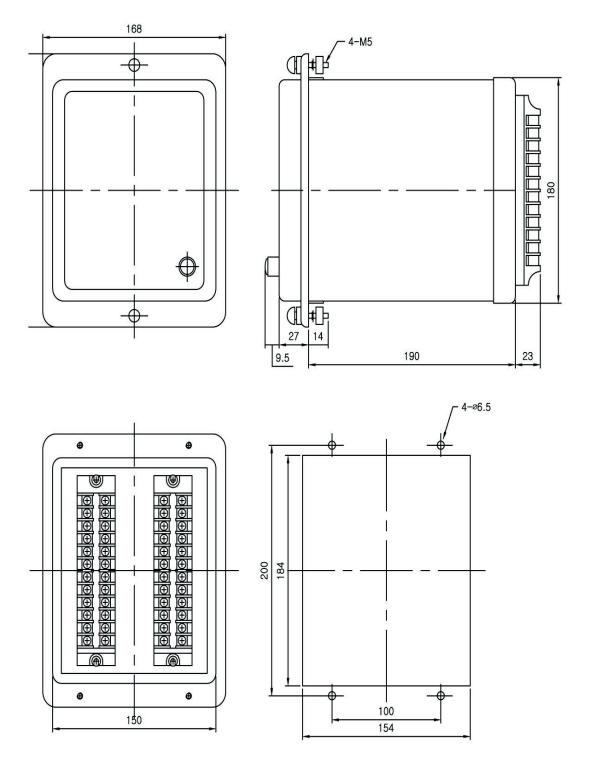
7.2.3 Graph

Comtrade에 저장된 Analog, Digital 파형에서 사용자가 원하는 파형을 선택적으로 볼 수 있는 기능으로 왼쪽 마우스 버튼을 이용해서 선택 (Select) / 해제

(Deselect)를 할 수 있습니다.


아래 그림에서 Graph Option이라는 항목이 있는데, 이 기능은 고장 파형을 PT/CT 1차측 혹은 PT/CT 2차측으로 계측값을 확인할 수 있는 기능으로 Primary로 설정하면 계측값을 1차측으로 표시하며, Secondary로 설정하면 2차측으로 표시합니다.

<Figure 22. GD31-AB06 Fault Evaluation Tool Graph>


7.2.4 Harmonic List

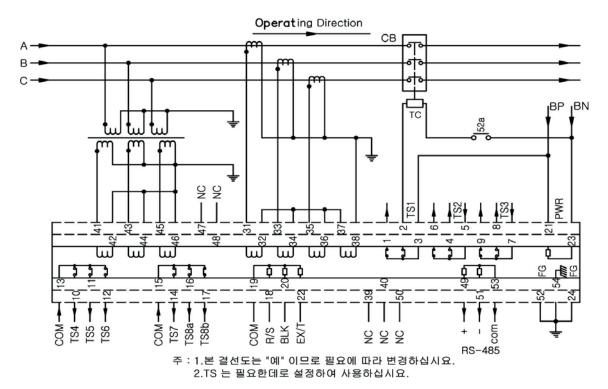
파형에서 사용자가 원하는 위치에 마우스 왼쪽 버튼을 누르면 황색실선()이 그려지며 실선이 지시하는 지점의 전압/전류의 고조파(1~15조파)를 계산하여 사용자에게 보여줍니다.

<Figure 23. GD31-AB06 Fault Evaluation Tool Harmonic List>

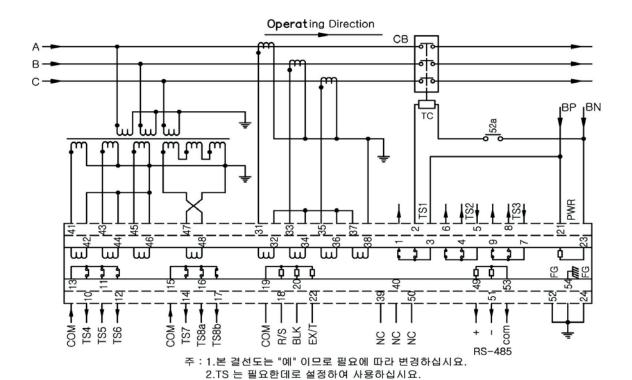
부도 1. 외형 및 치수 (Dimensioned Drawings) Unit : mm

<부도 1. Dimension>

18 S/H Filter 31 Contact Inputs 32 33 EEPROM S/H 20 Filter MUX A/D в≓ Flash Filter S/H 35 ROM кЫ 36 S/H 37 Filter RAM ıN⊐ 38 236 459 41 S/H LCD VA ⊐ Micro-Processor 42 43 KeyPad Filter S/H ۷В⊐ Contact Outputs 44 45 8 7 10 S/H Filter 46 11 47 12 VN] 13 14 17 48 RS 485 21 Power SIO 16 Supply 23 COM F.G

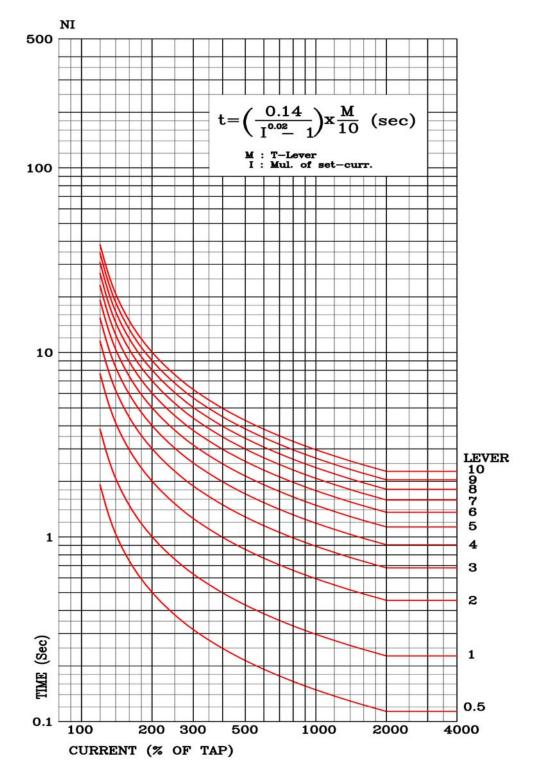

부도 2. 내부 Block Diagram (Internal Block Diagram)

<부도 2. Internal Block Diagram>

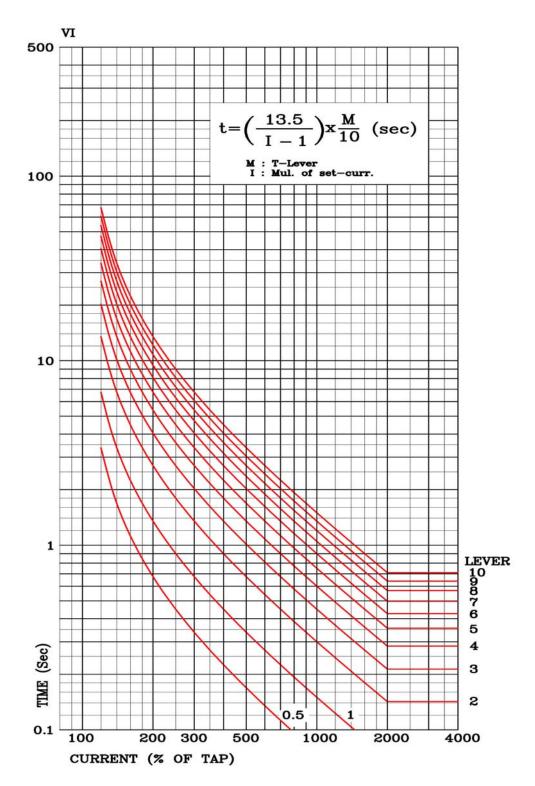

RS232C (전면부)

부도 3. 외부 결선도 (External Connection Diagram)

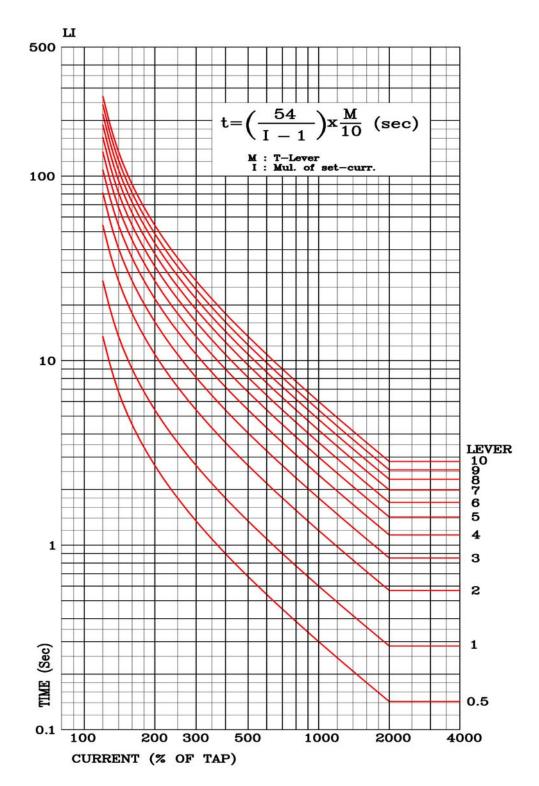
24, 52

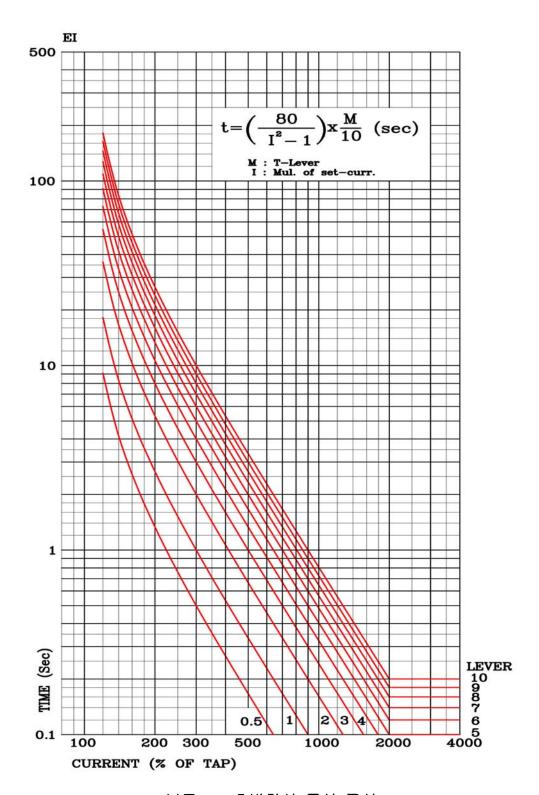


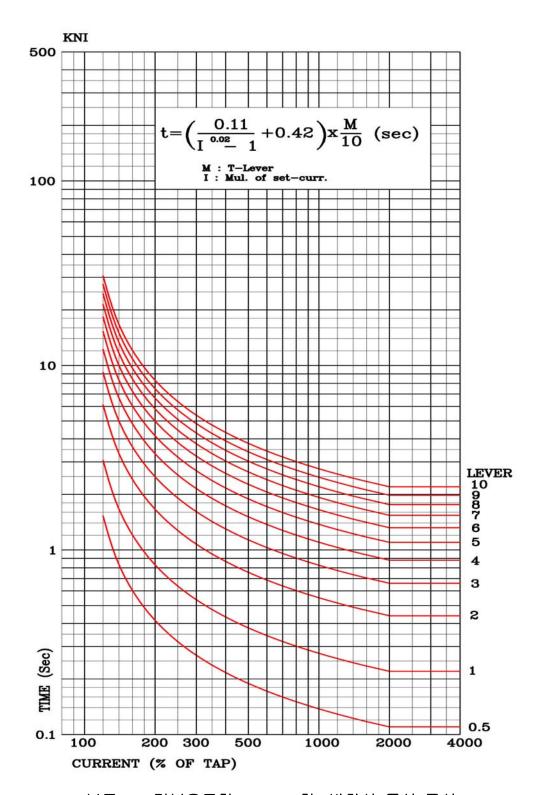
<부도 3.1 GPT 미사용 시 외부 결선도>

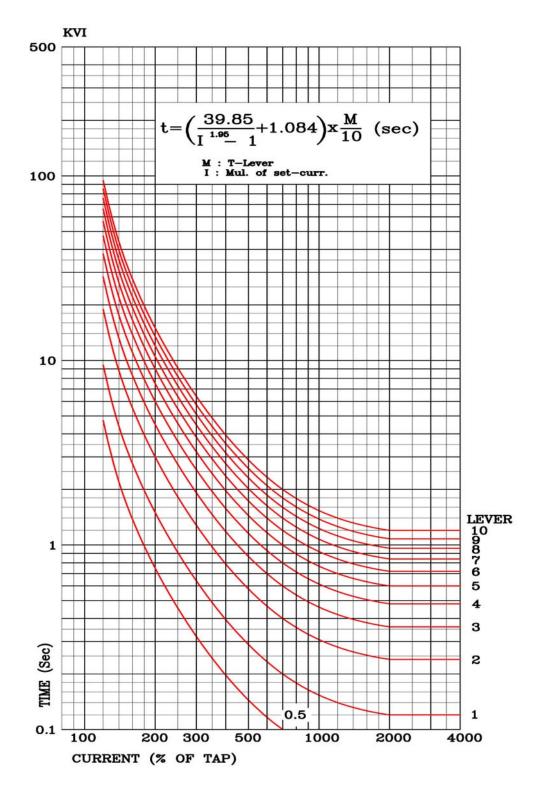


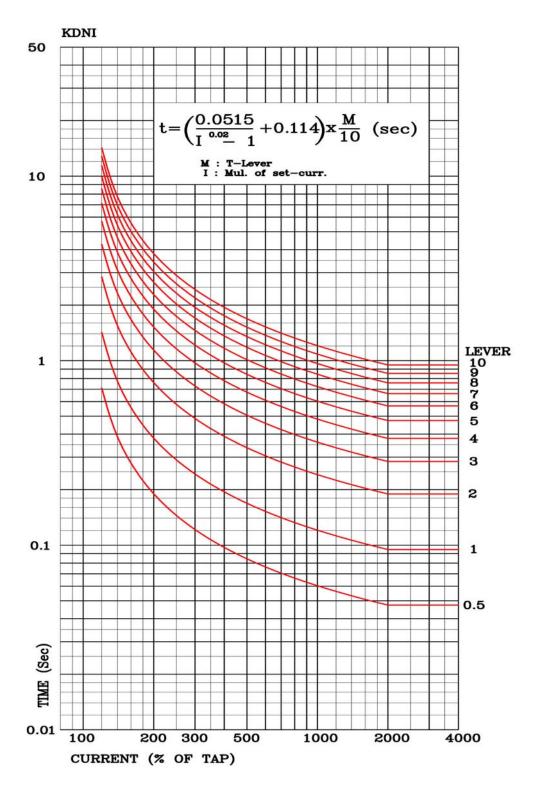
<부도 3.2 GPT 사용 시 외부 결선도>

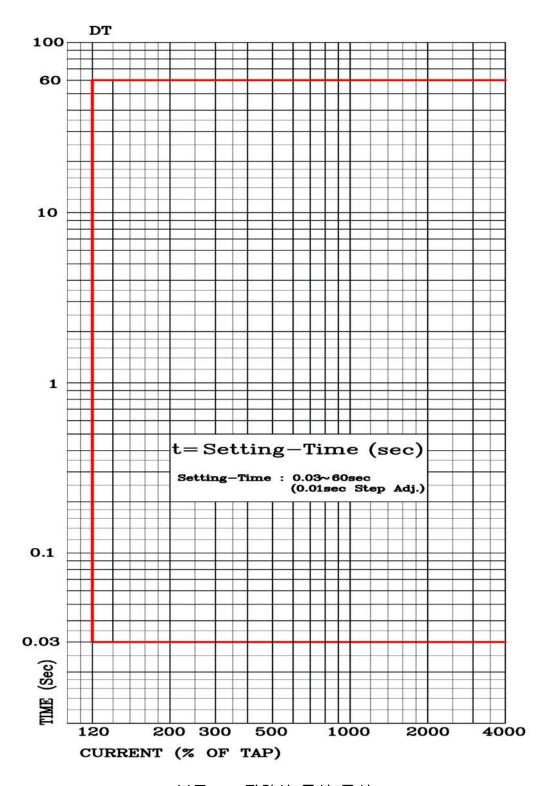

부도 4. 특성 곡선 (Characteristic Curve)


<부도 4.1 반한시 특성 곡선>


<부도 4.2 강반한시 특성 곡선>


<부도 4.3 장반한시 특성 곡선>


<부도 4.4 초반한시 특성 곡선>


<부도 4.5 경보유도형 (KEPCO형) 반한시 특성 곡선>

<부도 4.6 경보유도형 (KEPCO형) 강반한시 특성 곡선>

<부도 4.7 경보유도형 (KEPCO형) 방향성 반한시 특성 곡선>

<부도 4.8 정한시 특성 곡선>

부록 A. 제품 출하 시 Setting 값

2. PT_CON WYE/INT 3. P_PT_SEC 110.0V 4. P_PT_RAT 208.2 : 1 5. G_PT_SEC 190.0V 6. G_PT_RAT 1 : 1 7. P_CT_RAT 100 : 5 8. G_CT_RAT 100 : 5 1. CON IDOC+TDOC 1/S#01 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR 1/S#02 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR 1/S#03 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR 1/S#04 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR 1/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR 1/S#06 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR 1/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDOC 1/S#06 2. RST Self 3. DLY 0.00Sec 1. CON TDG 1/S#06 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR 1/S#06 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 1/S#08 2. RST Self 3. DLY 0.00Sec					1. FREQ		60Hz
Power System							WYE/INT
Power System 8. G_CT_RAT				1	3. P_PT	_SEC	110.0V
System Syste					4. P_PT	_RAT	208.2 : 1
용					5. G_P7	Γ_SEC	190.0V
8. G_CT_RAT 100 : 5 1. CON IDOC+TDOC T/S#01 2. RST Self 3. DLY 0.00Sec 1. CON IDG+TDG T/S#02 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR T/S#03 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR T/S#04 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON TDG T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 3. DLY 0.00Sec 3. RTC PC A Z 4. Waveform Second S				System	6. G_PT_RAT		1:1
조					7. P_CT_RAT		100 : 5
조 Setting 1. System 면 2. T/S#01			_		8. G_CT_RAT		100 : 5
조는 T/S#02					T/S#01	1. CON	IDOC+TDOC
지 Setting 1. System 면 1. System 면 2. T/S#02 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDOC_OR T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON TDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC 4. Waveform 2. TYPE 8×60 2. TYPOS 50%						2. RST	Self
조						3. DLY	0.00Sec
조 Setting 1. System 의 (SET) Setting 1. System 의 (SET) Setting (SET) Setting (SET) Setting (SET) Setting (SET) System 의 (SET) System 의 (SET) (SET) Support (SET) (1. CON	IDG+TDG
조 기 Setting 1. (SET) System 연 2. T/S#04 2. RST Self 3. DLY 0.00Sec 1. CON TDOC_OR 2. RST Self 3. DLY 0.00Sec 1. CON IDG T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON TDG T/S#05 2. RST Self 3. DLY 0.00Sec 1. CON TDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON TDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST SELF 3. DLY 0.00Sec 1. CON					T/S#02	2. RST	Self
조 Setting 1. System 면 1. System 면 2. T/S						3. DLY	0.00Sec
Setting 기 Setting 기 (SET) System 면 1.						1. CON	IDOC_OR
지 Setting 당 (SET) System 면 1. System 면 2. T/S 1. CON TDOC_OR					T/S#03	2. RST	Self
장 (SET) System 면 2. T/S	초					3. DLY	0.00Sec
3. DLY 0.00Sec 1. CON IDG 7/S#05 2. RST Self 3. DLY 0.00Sec 1. CON TDG 1. CON TDG 2. RST Self 3. DLY 0.00Sec 1. CON TDG 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR 3. DLY 0.00Sec 4. CON SYS_ERR 5. RST Self 6. RST Self 7/S#08 2. RST Self 7/S#08 2. RST Self 8. RST Self 1. TYPE 8. Self 2. RST Self 3. DLY 0.00Sec 4. CON SYS_ERR 5. RST Self 6. RST Self 7/S#08 2. RST Self 8. RST Self 9. RST Self 1. TYPE 8. Self 1. TYPE 8. Self 2. RST Self 3. DLY 0.00Sec 4. CON SYS_ERR 5. RST Self 6. RST Self 7/S#08 2. RST Self 8. RST Self 9. RST Self 9. RST Self 1. CON SYS_ERR 1. CON SYS_ERR 1. TYPE 8. Self 1. TYPE 8. Self 2. RST Self 3. DLY 0.00Sec 4. RST Self 5. RST Self 6. RST Self 7/S#08 2. RST Self 8. RST Self 9. RST		Setting	1.			1. CON	TDOC_OR
1. CON IDG		(SET)	System	2. T/S	T/S#04	2. RST	Self
1. CON IDG 2. RST Self 3. DLY 0.00Sec 1. CON TDG 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. DLY 0.00Sec 3. DLY 0.00Sec 3. RTC PC A ?! 4. 1. TYPE 8×60 Waveform 2. TPOS 50%	면					3. DLY	0.00Sec
3. DLY 0.00Sec 1. CON TDG 1. CON TDG 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR 2. RST Self 3. DLY 0.00Sec 3. DLY 0.00Sec 3. DLY 0.00Sec 4. 1. TYPE 8×60 2. TPOS 50%					T/S#05	1. CON	IDG
1. CON TDG T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. DLY 0.00Sec 3. DLY 0.00Sec 4. 1. TYPE 8×60 Waveform 2. TPOS 50%						2. RST	Self
T/S#06 2. RST Self 3. DLY 0.00Sec 1. CON PROT_OR 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 4. PC Λ 2 4. TYPE 8×60 Waveform 2. TPOS 50%						3. DLY	0.00Sec
3. DLY 0.00Sec 1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%					T/S#06	1. CON	TDG
1. CON PROT_OR T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%						2. RST	Self
T/S#07 2. RST Self 3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%						3. DLY	0.00Sec
3. DLY 0.00Sec 1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%					T/S#07	1. CON	PROT_OR
1. CON SYS_ERR T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%						2. RST	Self
T/S#08 2. RST Self 3. DLY 0.00Sec 3. RTC PC 人足性 4. 1. TYPE 8×60 Waveform 2. TPOS 50%						3. DLY	0.00Sec
3. DLY 0.00Sec 3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%					T/S#08	1. CON	SYS_ERR
3. RTC PC 시간 4. 1. TYPE 8×60 Waveform 2. TPOS 50%						2. RST	Self
4. 1. TYPE 8×60 Waveform 2. TPOS 50%						3. DLY	0.00Sec
Waveform 2. TPOS 50%				3. RTC			PC 시간
				4.	1. TYPI	E	8×60
Record 3 TSPC TDID				Waveform	2. TPOS		50%
J. ISIC TRIF				Record	3. TSR	C	TRIP

				1 CLV ADDD	1
			5. COM	1. SLV_ADDR	1
				2. BPS	9600
				3. PROTOCOL	DNP3.0
				1. TX_DELAY	0ms
				2. L_CFM	Never
			_	3. L_RETRY	0
			6. DNP	4. L_TO	1ms
				5. SBO_TO	1ms
				6. TIME_INT	0min
				7. COLD_RST	Disabled
			7. Password		0000
				1. FUNCTION	Enabled
				2. DIR	Forward
				3. MODE	Inst
				4. PICKUP	50A
			1. IDOCR	5. DT TIME	
				6. MTA	30°
				7. VLOS BLK	Disabled
				8. EXT BLK	No
				1. FUNCTION	Enabled
				2. DIR	Forward
초				3. CURVE	KVI
기	Setting	2. Protection	2. TDOCR	4. PICKUP	5A
화	(SET)			5. T DIAL	10.00
면				6. DT TIME	-
57				7. MTA	30°
				8. VLOS BLK	Disabled
				9. EXT BLK	No
				1. FUNCTION	Enabled
			3. IDGR	2. DIR	Reverse
				3. MODE	Inst
				4. PICKUP	5A
				5. DT TIME	-
				6. POL	Voltage
				7. VOLT PKP	15V
				8. MTA	-60°
				9. EXT BLK	No
			4. TDGR	1. FUNCTION	Enabled
				2. DIR	Reverse
				3. CURVE	KVI
				4. PICKUP	0.5A
				5. T DIAL	10.00
				6. DT TIME	-
				7. POL	Voltage
				8. VOLT PKP	15V
				9. MTA	-60°
				10. EXT BLK	No
				IV. LAI_DLK	110