Digital Ground Overcurrent Relay Manual

TYPE: GDR-B01

2006. 7. 18 Version 1.00

Kyongbo Electronics Co., Ltd.

Safety Precautions

This document is for the safety of the user, and to prevent property damage.

Be sure to read the user manual carefully, and use the product accordingly.

The user manual must be kept in a place where it can be easily seen by the product user.

WARNING

CAUTION

This symbol indicates the possibility of death or serious injury.

This symbol indicates the possibility of injury or damage to properties only.

SYMBOLS

Be sure not to do.

Be sure to follow the instruction.

WARNING

 Do not perform any wiring work while the power is on or the product is in operation.

It may cause an electric shock.

 Must verify the status of the grounding connection before starting the operation.

Otherwise, it may cause an electric shock, damage, or a fire.

Do not operate the product with wet hands.

It may cause an electric shock.

• Do not use if the clothing of the cable is damaged.

It may cause an electric shock.

 Do not perform any wiring work when the main cable is live.

It may cause an electric shock, and a damage or a fire by the charged voltage of the converter.

 Do not disassemble the product even if the power is not on, except for wiring or maintenance.

It may cause an electric shock by the charged current in the product.

 Let the electrical technician to perform wiring, test run, and maintenance.

Otherwise, it may cause an electric shock or a fire by a wrongful operation.

Perform terminal work when cutting a cable.

Otherwise, it may cause an electric shock from the naked part of the cable.

 Place the terminal cover on the terminal in the back after the wiring work.

Otherwise, it may cause an electric shock.

CAUTION

• Apply the rated power to the power source terminal.

Otherwise, it may cause a damage to the product or a fire.

 Follow the rated load on the input and output connections.

Otherwise, it may cause a damage to the product or a fire.

 Prevent screws, metal parts, water, or oil from entering the product.

It may cause a damage to the product or a fire.

• Do not let the product be exposed to a direct sunlight.

It may cause a damage to the product.

• Extract and insert Case on a leveled surface.

Otherwise, it may cause a damage to the product.

• Do not store the product in a humid or a dusty area.

It may cause a damage to the product.

Table of Contents

Order of Titles

1. General Features	9
2. Technical Data	10
2.1 Current Input ·····	
2.2 Rated Control Source Voltage ····	10
2.3 Rated Frequency	10
2.4 Case	10
2.5 Time Ground Overcurrent	11
2.6 Instantaneous Ground Overcurrent	
2.7 Output Contacts	
2.8 Insulation Test ·····	
2.9 Mechanical Test ·····	
2.10 Noise Test ····	
2.11 Temperature, Humidity Test ·····	
2.12 Other Operating Condition	
3. Protection Characteristics	
3.1 Ground Overcurrent Function	16
4. Subsidiary Function	18
4.1 Metering ·····	
4.2 Communication ·····	
4.2.1 RS-232C Communication ·····	19
4.2.2 RS-485C Communication ·····	19
4.3 Self Diagnosis Function	20
4.4 Fault Recording Function	20
5. Display Panel Construction	
5.1 Front-side Display Panel Structure	21
5.2 Key Pad & Communication Connector	22
5.3 LED (Operating Indicators)	22
6. Display & Setting Modes	
6.1 Key Operations and LCD Construction	
6.1.1 LCD Default Display Condition, Backlight On/Off	
6.1.2 LCD Screen Display and Principles of Key Operation	22

6.1.3 One-button Display ·····	23
6.1.4 Menu-Tree	23
6.2 Setting Modes ····	24
6.2.1 Measurement Screen ·····	26
6.2.2 Protection Setting	26
6.2.2.1 Protection ► Time OCGR Setting	26
6.2.2.2 Protection ► INST. OCGR Setting	27
6.2.3 Self-Diagnosis Screen ·····	28
6.2.4 RS-485 Comm. Setting ····	28
6.2.5 System Config. Setting	29
6.2.5.1 System Config. ▶ Power system Setting ·····	29
6.2.5.2 System Config. ► T/S Output Setting ·····	30
6.2.5.3 System Config. ▶ Password Setting ·····	31
6.2.6 Recorder ·····	32
6.2.6.1 Recorder ▶ 1.Display Fault Screen ······	33
6.2.6.2 Recorder ▶ 2.Clear Fault Category ·····	33
6.2.7 Test ·····	33
6.2.7.1 Test ▶ Display Test ·····	34
6.2.7.2 Test ▶ Contact Test ·····	34
7. PC Software (SetGDRSeries)	37
7.1 Program Menu	
7.2 Device Selecting	39
7.3 Communication Port Configuration	39
7.4 Setting Value Change Screen ·····	
7.4.1 Setting	
7.4.2 Status	
7.4.3 Report ·····	·· 42
7.5 Help	43

Order of Table

[Table 2.1]	Input Current ····	··· 10
[Table 2.2]	Rated Control Power	···· 10
[Table 2.3]	Case ····	···· 10
[Table 2.4]	Time Ground Overcurrent Element	···· 11
[Table 2.5]	Instantaneous Ground Overcurrent Element ·····	···· 11
[Table 2.6]	Output Contacts / Capacity ·····	··· 12
[Table 2.7]	Insulation ····	
[Table 2.8]	Vibration, Shock, Earthquake	
[Table 2.9]	Noise Endurance	··· 14
[Table 2.10]	1 , ,	
[Table 2.11]	Other Usage Conditions	···· 15
[Table 3.1]	Relay Time Characteristics and Characteristic Values for Curve Selection	···· 16
Table 4.1	Metering ·····	
[Table 4.2]	Communication Method ····	
[Table 5.1]	Key Pad & Communication Connector	
[Table 5.2]	LED (Operating Indicators)	22
[Table 6.1]	Time OCGR Menu	···· 27
[Table 6.2]	INST. OCGR Menu ····	28
[Table 6.3]	RS-485 Comm. Setting ····	29
[Table 6.4]	T/S Connection Menus ····	31
[Table 6.5]	Setting Menus ····	36
[Table 7.1]	SetGDRSeries Program Menus ·····	38
[Table 7.2]	Communication Port Configuration	39
Appendix 1	Product Factory Default Setting Values	44

Order of Figures and Diagrams

[Figure 3.1]	INST.OCGR(IOCGR) Logic Diagram
[Figure 3.2]	Time OCGR(TOCGR) Logic Diagram
[Figure 4.1]	RS-232C Circuit Diagram
[Figure 4.2]	RS-232C Connection
[Figure 4.3]	RS-485C Line Connection Diagram
[Figure 5.1]	Front Panel Display
[Figure 6.1]	Menu Tree
[Figure 7.1]	SetGDRSeries Default Screen
[Figure 7.2]	Device Selecting
[Figure 7.3]	Communication Port Setting
[Figure 7.4]	GDR-B01 Setting
[Figure 7.5]	GDR-B01 Status
[Figure 7.6]	GDR-B01 Report
[Figure 7.7]	Help
	Dimensioned Drawings Unit: mm45
Appended 2. 1	Internal Block Diagram
	External Connection Diagram
	Inverse Time Characteristic Curve
Appended 5.	Very Inverse Time Characteristic Curve
Appended 6. 1	Extremely Inverse Time Characteristic Curve
Appended 7. 1	Long Inverse Time Characteristic Curve
Appended 8. 1	Kyongbo Induction Type Inverse Time(KEPCO Type) Characteristic Curve 51
Appended 9. 1	Kyongbo Induction Type Very Inverse Time(KEPCO Type) Characteristic Curve ····· 52
Appended 10.	Definite Time Characteristic Curve

1. General Features

This Relay contains Relay elements of OCGRx1, and is a Digital arithmetic relay designed and manufactured properly for the protection against Ground Accident, so it is not just easy to change the operation time and operation current, but it can also record and store fault information thereby greatly enhancing the reliability of the cable line, and the main characteristics are as follows.

Features

- Total arithmetic type over-current Relay.
- Variety of timing characteristics(7 timing characteristics enclosed)
- \blacksquare Duration of maintaining output contact is $0.00 \sim 60.00 \text{Sec}$ (0.01Sec Step), and variable setting is possible.
- Set value and measured values are Displayed digitally through LCD Screen. (4 x 20 LCD Screen)
- Enhanced reliability with surveillance function at all times.
- Free selection of frequency Settings according to the rated frequency of the line. (50 / 60Hz)
- Possible to set each of 5 Relay contact output (T/S Output) to 4 modes, and all of these can be used for Alarms.
 - contact for Trip(1a), contact for Signal(4a)
- Reliability is increased by the operation through output contacts when the Relay is in abnormal state.
- Convenient PC Applications
 - SetGDRSeries : change setting values, verify the measurements, verify Fault information, display status, Remote Reset.
- Possible to self-test through manual Trip command(Contact Test)
- Maintains thorough security using password input when changing setting values
- Various communications supported
 - Communication Methods: RS-232C, RS-485C (SCADA communications)
 - Supported Protocol: MODBUS
- Increased EMC / EMI performance
- Applied Standard : Korea Electrical Manufacturers' Cooperative Standard (KEMC1120)

2. Technical Data

2.1 Current Input

[Table 2.1] Input Current

Rated Current (IN)	AC 5A	
Overload Endurance	2 times rated current / 3 hours 20 times rated current / 2 seconds	
Load	0.5VA or less	

2.2 Rated Control Source Voltage

[Table 2.2] Rated Control Power

Rated Current (IN)	AC/DC 110 ~ 220V (free voltage)	
Overload Endurance	1.3 times rated voltage / 3 hours	
Load	Always	30W or less
	Operation	70W or less

2.3 Rated Frequency

50Hz or 60Hz (Sine Waveform)

2.4 Case

[Table 2.3] Case

Case Structure	Flushed Drawer Type	
Case Color	Munsell No. N1.5 (Black)	
Case Material	Fe (Steel)	

2.5 Time Ground Overcurrent

[Table 2.4] Time Ground Overcurrent Element

Operation Value	0.2 ~ 2.5A (0.1A Step)	
	Inverse Time, Very Inverse Time, Extreme	
	Inverse Time , Long Inverse Time	
Operation Time	Kyongbo Induction Type (KEPCO Type)	
Characteristics	Inverse Time ,	
	Kyongbo Induction Type (KEPCO Type) Very	
	Inverse Time, Definite Time	
Operation Time Ratio	$0.1 \sim 10.0 \ (0.1 \ \text{Step})$	
Definite Time Operation Time	0.04 ~ 60.00Sec (0.01Sec Step)	
Release Delay Time	$0.00 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$	
Release Value	At least 95% of the Setting Value	
Operation Value	Within ±5% of the Setting Value	
Precision Ratio		

2.6 Instantaneous Ground Overcurrent

[Table 2.5] Instantaneous Ground Overcurrent Element

Operation Value	2 ~ 50A (1A Step)	
Operation Time Characteristics	Instantaneous Time (\leq 40ms), Definite Tim	
Definite Time Operation Time	0.04 ~ 60.00Sec (0.01Sec Step)	
Release Delay Time	0.00 ~ 60.00Sec (0.01Sec Step)	
Release Value	At least 95% of the Setting Value	
Operation Value Precision Ratio	Within ±5% of the Setting Value	

2.7 Output Contacts

[Table 2.6] Output Contacts / Capacity

T / S1 contacts (Trip contacts) - 1a Contact		
Rated Power	AC 250V, DC 125V	
Continuous Flow Electricity Capacity	20A (AC 250V)	
0.5 sec. Close Circuit Capacity	30A (DC 125V)	
Closing Capacity	6250VA	
Material	Silver alloy	
T / S2 ~ T / S5 Contacts	(Signal contacts) - 4a Contact	
Rated Power	AC 250V, DC 125V	
Continuous Flow Electricity Capacity	5A (AC 250V)	
0.5 sec. Close Circuit Capacity	5A (DC 125V)	
Closing Capacity	1250VA / 150W	
Material	Gold-plate silver alloy	
Healthy Alarm - 1b Contac	et	
Rated Power	AC 250V, DC 125V	
Continuous Flow Electricity Capacity	10A (AC 250V)	
Open Circuit Capacity	DC 125V, 30W, Correction Number(25ms), 1A	
Closing Capacity	2500VA / 300W	
Material	Silver alloy	

2.8 Insulation Test

[Table 2.7] Insulation

		Electric Circuit to	10ΜΩ	
	DC 500V	Ground	10M22	
Insulation		Between Electric		IEC60255-5
Resistance	DC 300 V	Circuits	5MΩ	IEC00233-3
		Between Electric	J1V152	
		Circuit Connections		
		Electric Circuit		
Commercial		Bundle to Ground	2kV	
Frequency	50/60Hz,	Between Electric	2K V	IEC60255-5
Withstand	1min	Circuits		11200233-3
Voltage		Between Connection	1kV	
		Circuit Contacts	TK V	
		Electric Circuit		
		Bundle to Ground		
		Between	5kV	
		Transformer Circuits	JK V	
	1.2/50μs,	Between Transformer		
Impulse	3 times each	Control Circuits		
Withstand	for	Between Control		IEC60255-5
Voltage	positive/negative	Circuits		
	polarity	Between Tranformer		
	1 3	Circuit Contacts	3kV	
		Between Control		
		Power Circuit		
		Contacts		

Caution) AUX POWER and 485 Communication Circuits enclose surge protection circuit inside the relay, so do not test insulation resistance test and withstand voltage test.

2.9 Mechanical Test

[Table 2.8] Vibration, Shock, Earthquake

Vibration Response Test Vibration Vibration Endurance Test		10 ~ 150Hz, 0.5G, Front/Back, Left/Right, Up/Down 1 time
		10 ~ 150Hz, 1G, Front/Back, Left/Right, Up/Down 20 times
	Shock Response Test	5G, Front/Back, Left/Right, Up/Down 3 times
Shock Shock Withstand Test Bump Test		15G, Front/Back, Left/Right, Up/Down 3 times
		10G, Front/Back, Left/Right, Up/Down 100 times
Earth qualra	1 ~ 8Hz	x : 3.5mm, y : 1.5mm, Sweep : 1 time
Earthquake	8 ~ 35Hz	x : 1g, y : 0.5g, Sweep : 1 time

2.10 Noise Test

[Table 2.9] Noise Endurance

1MHz burst disturbance	1MHz, 75ns,	Common mode	2.5kV	IEC60255-22-1		
	400Hz, 2Sec	Differential mode	1.0kV			
	Applied Voltage	4kV	I			
EFT Burst	Repeated Frequency	2.5kF	Hz	IEC60255-22-4		
Electrostatic Discharge	Air discharge	8kV	7	IEC60255-22-2		
Electrostatic Discharge	Contact discharge	6kV	7	IEC00233-22-2		
Surge Electrical	1.2/50μs, 8/20μs,	Common mode	2.0kV	IEC60255-22-5		
Disturbance	30sec, 3 times	Differential mode	1.0kV	IEC00233-22-3		
Radio Frequency Radiation Endurance	80MHz ~ 1G	IEC60255-22-3				
Radio Frequency Conduction Endurance	150kHz ~ 80N	IEC60255-22-6				

2.11 Temperature, Humidity Test

[Table 2.10] Temperature, Humidity

Tomporatura Banga	Operation Assurance	-10°C ~ +55°C				
Temperature Range	Recovery Assurance	-20℃ ~ +60℃				
Relative 1	Daily Average 30% ~ 90%					

2.12 Other Operating Condition

[Table 2.11] Other Operating Conditions

Surface Height	1000m or less								
Condition where there is no abnormal vibration, shock, slope or influence									
of the magnetic field	of the magnetic field								
Place where there is no explosive dust, flammable dust, or flammable									
/ rusty gas, or salt									

3. Protection Characteristics

3.1 Ground Overcurrent Function

This relay contains the Instantaneous Time characteristic, Inverse Time characteristic, and Definite Time characteristic to be used for ground protection. GDR-B01 marks the instantaneous element as INST.OCR(IOCR), and the time element as Time OCR(TOCR).

The instantaneous time characteristic is a function to output Trip signal immediately when a current over the setting value is input, the Trip time is less than 40ms, and the inverse time characteristic is a function between the current and the time, and the operation time is shorter as the current is bigger. There are 4 international standard(IEC) inverse time characteristics and 2 KEPCO type inverse time characteristics equipped.

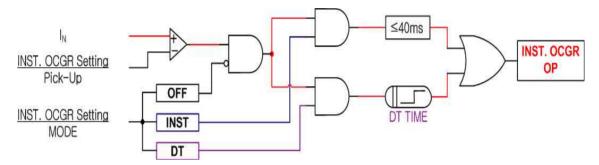
When applying the inverse time characteristics, select one from the 6 characteristics.

4 Inverse characteristics following the international standard(IEC255-4), and the time and current relationship function of 2 KEPCO type characteristics are as follows.

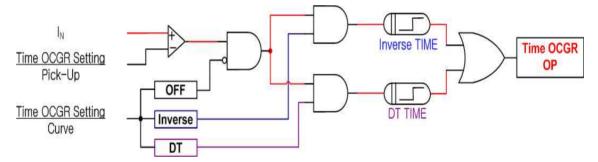
$$T = \left(\frac{K}{I^L - 1} + C\right) \times \frac{M}{10}(\sec)$$

T = Operation Time, K and C = Relay characteristic value

I = Relay input current / Relay operation setting value


L = Characteristic curve index, M = Operation time ratio

[Table 3.1] Relay Time Characteristics and Characteristic Values for Curve Selection


Time Characteristic	Char	acteristic \	Value	Indication	Note	
Time Characteristic	K	L	C	Mark	Note	
Inverse Time	0.14	0.02	0	NI	-	
Kyongbo Induction	0.11	0.02	0.42	KNI	KEPCO	
Type Inverse Time	0.11	0.02	0.42	IXIVI	Type	
Very Inverse Time	13.5	1	0	VI	-	
Kyongbo Induction Type Very Inverse Time	39.85	1.95	1.084	KVI	KEPCO Type	
Extreme Inverse Time	80	2	0	EI	-	
Long Inverse Time	54	1	0	LI	-	
Definite Time	-	-	-	DT	-	

When setting the relay, selecting the time characteristic curve will decide the K, L, C values in the above table.

Logic Diagram for ground overcurrent element operation is as follows.

[Figure 3.10] INST.OCGR(IOCGR) Logic Diagram

[Figure 3.11] Time OCGR(TOCGR) Logic Diagram

4. Subsidiary Function

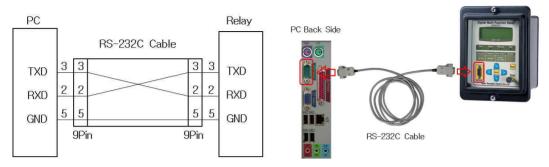
4.1 Metering

This relay has the metering function of the 3-phase and ground current.

[Table 4.1] Metering Display

Category	Characteristic
	Measure the effective value of the Current
Ground Current(I _N)	• 1st Current of the relay input current converted by CT ratio
	• Metering Range : 0 ~ 100A (When Ground CT Ratio is 5:5)

Except, the current over the metering range is displayed as FULL.

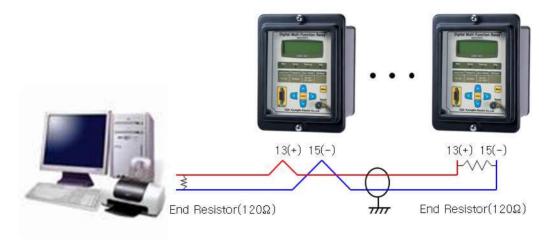

4.2 Communication

This relay offers the general purpose RS-232C / RS-485C communication method, and the maximum speed of 19200 bps data transmission is possible. There are 1 RS-232C port in the front and 1 RS-485C port in the back of the relay. The RS-232C communication port in the front of the relay is connected to PC and used for changing the setting values, viewing the measurement, verifying Fault information, display the status, and Remote Reset, and the RS-485C communication port in the back is used for remote SCADA communication.

[Table 4.2] Communication Method

Protocol	Communication Method	• RS-232/485							
Protocol	Supported Protocol	• MODBUS							
	Communication Distance	• 1.2km							
	Communication Cable	• General Purpose RS-485C Two-Pair cable							
Communication Protocol (RS-485C)	Communication Speed	• 300 ~19200 bps							
(115-105C)	Communication Method	Half-Duplex							
	Maximum In/Out Voltage	• -7V ~ +12V							
	Front Display Panel	RS232 Port 119200 BPS, MODBUS Protocol							
Communication Port	Back	 RS485 Port 1 300 ~ 19200 BPS, MODBUS Protocol Upper Level SCADA Communication Contact No.: 13(+), 15(-) 							

4.2.1 RS-232C Communication


[Figure 4.1] RS-232C Circuit Diagram

[Figure 4.2] RS-232C Connection

- The RS-232C communication cable supplied with this product uses a cross cable which has No. 2 and No. 3 pins crossed ash shown in **[Figure 4.1]**, so using ordinary direct cable will not enable the communication.
- If there is no RS-232C port in the PC, and uses USB port, only with USB to 232 cable cannot make connection, so please use USB to 232 cable with the cross cable supplied with this product together.

4.2.2 RS-485C Communication

To connect to higher level monitoring control system, insulated RS-485 Half Duplex communication method is provided. This communication method can connect with multi-drop, and the maximum communication distance is 1.2km. The end part of RS-485C cable should be connected with 120Ω resistor parallel as shown in the following figure.

[Figure 4.3] RS-485C Connection Diagram

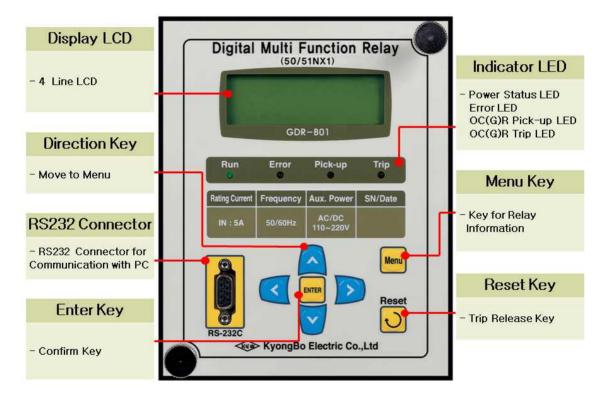
4.3 Self Diagnosis Function

Self Diagnosis function monitors the operation status of the relay at all times to prevent abnormal/failure operation of the equipment. If an abnormality is detected, red Error LED is lighted, and the Self Diagnosis result category in the Self-Diagnosis menu is displayed as FAIL. Also, when a fault occurs, the operation output of the relay element is blocked immediately, and it is displayed on LCD and LED until the fault is cleared.

Main diagnosis categories are as follows.

- Power Fail
- CPU Watchdog Fail
- Memory Fail
- Value outside Setting

4.4 Fault Recording Function


This function displays the accumulated count of operation, current, operation element, and relay operation time.

It can be viewed using PC Tool(SetGDRSeries) through RS-232C communication.

5. Display Panel Construction

5.1 Front-side Display Panel Structure

The front-side display panel has 20 x 4 LCD, 4 LEDs, 7 KeyPad, and RS-232C Communication Connector as follows. There is a transparent cover on the front-side to prevent dust or foreign substance from entering and to stop unnecessary key operations. When changing the setting value, it is required to input password to prevent unauthorized user other than designated person to change the setting, and the protection function is still operational during the inquiry through LCD.

[Figure 5.1] Front-side Display

5.2 Key Pad & Communication Connector

[Table 5.1] Key Pad & Communication Connector

Direction (Used for setting value changes and moving between menus.
ENTER (bots) Key	Key used to confirm changes in menu or setting.
Reset () Key	Key used for Indicator Reset when the relay is in operation, and to verify the settings without opening the cover when a fault has not occurred.
Menu (Menu) Key	Key to verify and change all the information such as setting values and fault record.
RS-232C Connector	RS-232C Connector enabling setting value changes from PC with mutual communication with PC.

5.3 LED (Operating Indicators)

[Table 5.2] LED (Operating Indicators)

Run (Green)	As a LED indicating that the power is supplied and the CPU of the protection relay is running normally, it is lighted in normal condition, and if it is not lighted when the power is supplied, it means the CPU is not running, and there is a serious problem in the equipment, so it requires repair or replacement.
Error (Red)	When there is a fault in the equipment and the fault is detected by the self-diagnosis function, Error LED is lighted red, and the protection relay element operation is blocked. The details of the fault can be viewed through LCD with Key operation, and when the fault is cleared, it is recovered with the lighted LED turning off.
Pick-up (Yellow)	When the OCGR element is Picked Up by matching the set condition, Pick-Up LED is lighted yellow, and it is turned off automatically when it is recovered.
Trip (Red)	As an operation indicator of OCGR element, when the element operates, it outputs Trip and Trip LED is lighted red at the same time. Even if the protection element is recovered, the lighted LED at this state is kept on until Reset () Key is pressed.

6. Display & Setting Modes

6.1 Key Operation and LCD Construction

6.1.1 LCD Initial Display Status, Backlight On/Off

After the power is ON, the follow default screen is displayed.

If there is a fault in the equipment, System Error! is displayed instead of System OK!

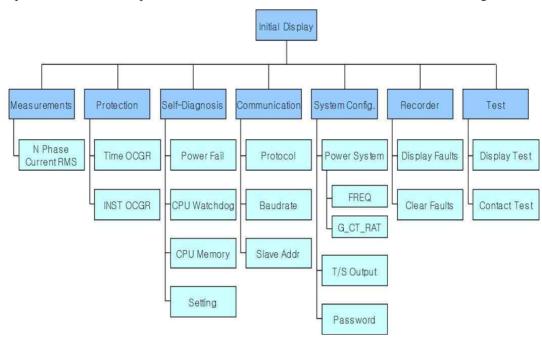
The LCD Backlight is turned Off automatically after 3 minutes has passed without Key operation.

6.1.2 LCD Screen Display and the Principles of Key Operation

The information Displayed on LCD Screen is made of a Tree structure, and you can find and select the information in the Tree structure using Left(\square), Right(\square), Up(\square), Down(\square) Keys.

The category that the cursor(*) is pointing indicates the current selected category, and pressing

Key will Display detail categories. To exit the current category, press


6.1.3 One-button

You can view the measured values, setting values, and diagnosis status sequentially on LCD Screen by pressing Reset () Key repeatedly. This enables viewing without opening the transparent cover on the front part of the Relay.

When Operating Indicator is turned on as the Relay element is operational, it operates as Indicator Reset.

6.1.4 Menu-Tree

[Figure 6.1] Menu Tree summarized the menu structure that can be Displayed on the Relay.

Operations and descriptions of each menu are stated in detail in 6.2 Setting Modes.

[Figure 6.1] Menu Tree

6.2 Setting Modes

For this Relay to operate properly, it needs to be set appropriately to the system environment in which it is used. The Settings and Display elements are composed of 7 categories of Measurement, Protection, Self-Diagnosis, RS-485 Comm., System Config, Recorder, and Test.

Press Menu () Key from the default LCD screen, then the screen asking for Password appears.

- (1) Key: Changes the number
- (2) Ney: Changes the location of the digit
- (3) ENTER () Key: Confirm the password after the input of password.

Password is composed of 4 digits from $0\sim 9$, and the default password of the relay is set to "0000", so pressing ENTER () Key from the password input screen will convert directly to Setting screen.

The Setting default screen is as follows.

```
- > S e t t i n g

1 . M e a s u r e m e n t

2 . P r o t e c t i o n

3 . S e l f - D i a g n o s i s

4 . R S - 4 8 5 C o m m .

5 . S y s t e m C o n f i g .

6 . R e c o r d e r

7 . T e s t
```

For example, to change PickUp current of the instantaneous ground overcurrent, operate as the following order.

- (1) Press V Key: (*) symbol moves to 2. Protection category
- (2) Press Ney: moves to Protection screen
- (3) Press V Key: (*) symbol moves to 2.INST. OCGR category
- (4) Press Ney: moves to INST. OCGR Screen
- (5) Press V Key: (*) symbol moves to 2.PICK-UP category
- (6) Press New: currently stored current value of 2.PICK-UP flashes.
- (7) Press Key: changes to desired setting value
- (8) Press ENTER (New : temporarily stores the decided value
- (9) Press Key: moves to Protection Screen
- (10) Press Key: moves Setting Screen
- (11) Press **(11)** Key: displays the following screen. "No" category flashes.

```
Are you sure
to save changed
Setting Value?
No
```

- (12) Press Key : select Yes from Yes and No categories
- (13) Press ENTER () Key: stores the changed value and moves to the default screen

If selecting No in (12) and pressing ENTER () Key will erase the changed value, and the original setting data is restored.

Also, until ENTER (Dec) Key is pressed at "Are you sure to save changed Setting

Value? Yes", changed setting value does not affect the protection relay, and the original setting values are applied.

All the changes to each category can be done as of the above example.

6.2.1 Measurement Screen

Measurement Screen displays the measured current value.

Measurement Screen has the following category.

Display the current value for each phase (Display as CT 1st Side : 2nd Side Current multiplied by CT Ratio)

Pressing Key in the Measurement Screen will exit this menu and convert to the upper menu.

6.2.2 Protection Setting

Protection Setting has categories to perform Time OCGR and INST. OCGR protection function.

Select 2. Protection category in Setting, and the following screen appears.

```
- > Protection
1 . Time OCGR
2 . INST. OCGR
```

Pressing Key in the Protection Screen will exit this menu and convert to the default screen of Setting.

6.2.2.1 Protection ▶ Time OCGR Setting

It is a category to set the definite time overcurrent element, and selecting () 3. Time OCGR category in Protection will display the following screen.

-	-	>		T	i	m	e		0	C	G	R						
1	1	•	\mathbf{C}	U	R	V	E					:		N	I			*
2	2		P	I	C	K	_	U	P			:		0		1	A	
3	3		T	I	M	E		D	I	A	L	:	1	0		0		

Press <a> Key in Time OCGR screen, then it will exit this menu and convert to the upper menu.

Detail categories that can be set in Time OCGR are as follows.

Default Category Range **Setting Unit Description** Value OFF, NI, VI, EI, LI, KVI Set time characteristic Curve KNI, KVI, DT 5.0A **PickUp** $0.2 \sim 2.5A$ 0.1ATime Pickup value Time Dial $0.1 \sim 10.0$ 0.1 10.0 Set time ratio Set the time of definite **DT-Time** $0.04 \sim 60.00 \text{Sec}$ 0.01Sec

[Table 6.1] Time OCGR Menu

6.2.2.2 Protection ▶ INST. OCGR Setting

It is a category to set the instantaneous time overcurrent element, and selecting(

1. A.INST. OCGR category in Protection will display the following screen.

_	>		I	N	S	T	•		O C G	R				
1		M	O	D	\mathbf{E}				:		D	T		*
2		P	I	C	K	_	U	P	:		1	0	A	
3	•	D	T	_	T	I	M	E	:	0	0	4	S	

Press <a> Key in INST. OCGR screen, then it will exit this menu and convert to the upper menu.

Detail categories that can be set in INST. OCGR are as follows.

time

Category	Range	Setting Unit	Default Value	Description
Mode	OFF, INST, DT	-	DT	Set OFF, instantaneous time, definite time
PickUp	2 ~ 50A	1A	5A	Instantaneous Pickup value
DT-Time	0.04 ~ 60.00Sec	0.01Sec	0.04Sec	Set the time of definite time

[Table 6.2] INST. OCGR Menu

6.2.3 Self-Diagnosis Screen

This menu displays the result of the self-diagnosis function for each diagnosis category.

Diagnosis categories are control power, CPU WatchDog Timer, memory, and setting value, and if a fault occurs for each category, "FAIL" is displayed, and "System Error!" is displayed in the default LCD screen instead of "System OK!", and Error LED is lighted red.

Self-Diagnosis Screen is as follows.

1	P	0	W	e	r		F	a	i	l			:	F	A	I	L	*
2	C	P	U		W	a	t	c	h	d	0	g	:		0	K		
3	M	e	m	0	r	y							:		0	K		
4	S	e	t	t	i	n	g						:		0	K		

Press (Key in self-diagnosis screen, then it will exit this menu and convert to the upper menu.

6.2.4 RS-485 Comm. Setting

It is a category to set the communication setting, and it can set Baudrate and Slave Addr.

Selecting() 4. RS-485 Comm. category in Setting will display the following screen.

_	>		R	S	-	4	8	5		C	0	m	m	•					
1		P	r	0	t	0	c	0	1			:	M	0	d	В	u	S	*
2												:	1	9	2	0	0		
3		S	1	a	v	e		A	d	d	r	:					1		

Press **(** Key in RS-485 Comm. screen, then it will exit this menu and convert to the upper menu.

[Table 6.3] RS-485 Comm. Setting

Category	Range	Default Value	Description
Protocol	MODBUS	MODBUS	Communication Protocol
Baudrate	300, 600, 1200, 2400, 4800, 9600, 19200 (bps)	19200	Set the communication speed
Slave Addr	1~254	1	Set Slave Addr

6.2.5 System Config. Setting

System Config. has detail categories of Power system, T/S Output, and Password. Selecting() 5. System Config. category in Setting will display the following screen.

Press <a> Key in System Config. screen, then it will exit this menu and convert to the default screen of Setting.

6.2.5.1 System Config. ▶ Power system Setting

Power system has detail categories of FREQ(frequency) and G_CT_RAT. Selecting() 1. Power system category in System Config. will display the following

```
- > Power System
1 . FREQ : 60 Hz*
2 . G_CT_RAT: 5:5
```

Press (Key in Power system screen, then it will exit this menu and convert to the upper menu.

• System Config. ▶ Power system ▶ FREQ Setting

It is a category to set the common frequency used in the system where the relay is used.

There are two categories, 50Hz and 60Hz, and for cable using 60Hz, select 60Hz.

• System Config. ▶ Power system ▶ G CT RAT Setting

It is a category to set the 1st CT ratio on ground side. It can be set in 5 units from 5 to 10000. This relay is designed for CT 2nd rated to be 5A, so CT with 5A 2nd must be selected when selecting CT. For example, if using CT of Phase side as 1000:5, set 1000 in G CT RAT setting.

6.2.5.2 System Config. ► T/S Output Setting

Connection types and recovery delay time for 7 output connections can be set in T/S Output.

Select 2. T/S Output category in System Config., then the following screen appears.

_	>		T	/	S	0	u	t	p	u	t	
1	•	T	/	S	1							*
2	•	T	/	S	2							
3		T	/	S	3							
4	•	T	/	S	4							
5	•	T	/	S	5							

To set the desired T/S, press \triangle , \forall Key to move (*) symbol to the desired category.

• System Config. ▶ T/S Output ▶ T/S 1 Setting

It is a category that can set the connection type, recovery method, and recovery delay time, etc. for 5 output connections in T/S Output.

Select 1. T/S 1 category in T/S Output, then the following screen appears.

_	>		T	/	S		1	
1		\mathbf{C}	O	N		:		$P R O T _ O R *$
2	•	R	S	T		:		$\mathbf{S} \stackrel{\mathbf{\overline{E}}}{\mathbf{E}} \mathbf{L} \mathbf{F}$
3		D	L	Y		:		0 . 0 0 s

T/S 1 in the above screen means No. 1 output connection.

Press <a> Key in T/S 1 screen, then it will exit this menu and convert to the upper menu.

• System Config. ▶ T/S Output ▶ T/S 1 ▶ 1.CON Setting

It is a category to select in which condition to operate the output connection.

The types and meanings to connect output connection are as follows.

Connection

OFF
Connection not used.

PROT_OR
Output if any one of the relay element is in operation among all elements.

IOCGR
Output if instantaneous ground overcurrent element is in operation.

TOCGR
Output if time ground overcurrent element is in operation.

[Table 6.4] T/S Connection Menus

• System Config. ▶ T/S Output ▶ T/S 1 ▶ 2.RST Setting

It is a category to set which method should be used when the output connection is recovered after the operation.

This relay has two methods, Self Mode and Manual Mode.

Self Mode is a function that the relay is automatically recovered after the operation, and Manual Mode is a function that the relay is not automatically recovered, but manually recovered. That is, it is not recovered until the user presses Reset () Key, and is recovered when the Reset () Key is pressed.

• System Config. ► T/S Output ► T/S 1 ► 3.DLY Setting

It is a category that can add to the recovery delay time on the recovery.

This menu is only applied when it is in Self Mode in the above 2. RST Setting, and is not applied if it is in Manual Mode.

If DLY is set to 0.00, it recovers within 40ms, and if you want the recovery within 100ms, set it to be 0.06.

It can be set in the units of 0.01Sec from 0.00 to 60.00, and it recovers with the error ratio of ± 35 ms if under 100ms, and the error ratio of $\pm 5\%$ if 100ms or more.

6.2.5.3 System Config. ▶ Password Setting

It is a category to change the Password Setting, and the password is set as 4 digits using the numbers from 0 to 9.

Select 3.Password category in Config., then the following screen appears.

```
-> Password
New Password: * * * *
```

From this screen, input new password, and press ENTER () Key, then the screen to input password again appears as follows.

```
- > Password
New Password: * * * *
Cfm. Password: * * * *
```

From this screen, input password again, and press ENTER () Key, then the following screen appears, and it converts to the upper menu.

If you don't want to change password in Password Screen, press <a> Key, then it will exit from this menu and convert to the upper menu.

6.2.6 Recorder

Recorder category displays the fault content and the number of faults. Select 6. Recorder in Setting, then the following screen appears.

	-	>		F	a	u	l	t		R	e	p	0	r	t			
ı	1	•	D	i	S	p	l	a	y		F	a	u	l	t	S		*
1	2	•	C	1	e	a	r		F	a	u	l	t					
1						1			F	a	u	l	t	!				

6.2.6.1 Recorder ▶ 1.Display Fault Screen

Display Fault Screen displays the recent fault record. If a new fault occurs, the old record is erased and the new fault is stored.

Select 1.Display Fault category in Recorder, then the following screen appears.

To view fault record from the above screen, press , Wey to view the detail categories such as accumulated number of operation, current, operating element, and relay operation time, etc.

Press Display <a> Key in Fault Screen, then it will exit this menu and convert to the upper menu.

6.2.6.2 Recorder ▶ 2.Clear Fault Category

This category can delete the stored Fault content.

Select 2.Clear Fault in Recorder, then the following screen appears.

In the above screen, "No" flashes, and if you don't want to delete the fault record stored, press Key, and if you want to delete the fault record, press Key to change "No" to "Yes", and press ENTER () Key.

6.2.7 Test

You can test Front Display(Panel), Connection Output, etc. in Test category. Select 7. Test in Setting, then the following screen appears.

```
- > Test
1 . Display Test
2 . Contact Teet
```

Press Key in Test Screen, then it will exit this menu and convert to the default screen of Setting.

6.2.7.1 Test ▶ Display Test

This menu is a category that can check the condition of LCD and LED on the relay front side.

Select 1.Display Test in Test, then the following screen appears.

If you don't want the Display Test in the Display Test Screen, press <a> Key, then it will exit this menu and convert to the upper menu.

To perform Display Test, press Key from this screen to change "No" to "Yes", and press ENTER () Key, then TEST will flash 3 times on LCD, and all the LEDs flashes 3 times at the same time, then it will move to Test menu.

When performing Display Test, the following screen appears.

T	E	S	T	T	E	S	T	T	E	S	T	T	E	S	T	T	E	S	T
T	E	S	T	T	\mathbf{E}	S	T	T	E	S	T	T	E	S	T	T	\mathbf{E}	S	T
T	E	S	T	T	\mathbf{E}	S	T	T	E	S	T	T	E	S	T	T	E	S	T
T	E	S	T	T	E	S	T	T	E	S	T	T	E	S	T	T	E	S	T

6.2.7.2 Test ▶ Contact Test

This menu is a category that can check the conditions of the connections by changing the connection outputs as desired.

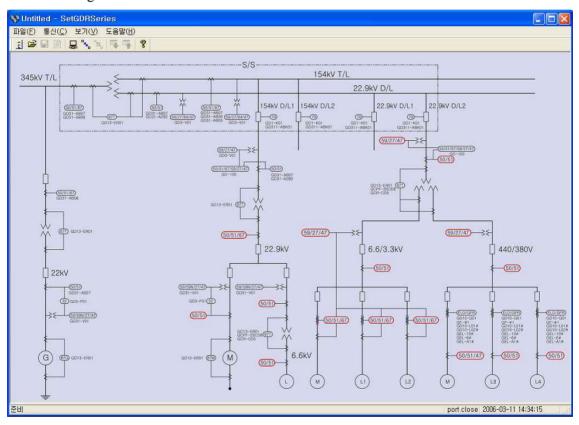
Select 2. Contact Test in Test, then the following screen appears.

_	>		C	0	n	t	a	c	t	T	e	S	t			
1		T	/	S		1				:			0	f	f	*
2		T	/	S		2				:			0	f	f	
3		T	/	S		3				:			0	f	f	
4		T	/	S		4				:			0	f	f	
5		T	/	S		5				:			0	f	f	
6		Н	•	A	1	a	r	m		:			0	n		

To test $T/S1 \sim T/S5$ connections, after selecting() the desired connection, press ENTER () Key, then after the connection is activated, it recovers to off state with the sound of "Click".

To test Healthy Alarm connection, select() H.Alarm connection, press Key to change to Off, and press ENTER () Key, then after the connection is activated, it recovers to On state with the sound of "Click".

Press <a> Key in Contact Test, then it will exit this menu and convert to the upper menu.


[Table 6.5] Setting Menus

	Measuremen	nts	In						
			1. Curve	;	OFF, NI, VI, EI, LI, DT, KNI, KVI				
		1. Time	2. PickU	^J p	0.2~2.5A(0.1A Step)				
		OCGR	3. Time	Dial	0.1~10.0(0.1Step)				
	2. Protection		4. DT_T	`ime	0.04~60.00Sec(0.01Sec Step)				
			1. Mode		OFF, INST, DT				
		2. INST. OCGR	2. PickU	^J p	2~50A(1A Step)				
			3. DT_T	ime	0.04~60.00Sec(0.01Sec Step)				
	3. Self-Diagno	sis			Power Fail, CPU Watchdog, CPU Memory, Setting				
		1. Protocol			MODBUS				
Default Screen	4. RS-485 comm.	2. Baudrate			300, 600, 1200, 2400, 4800, 9600, 19200 (bps)				
Setting (Menu)		3. Slave Ad	ldr		1~254				
		1. Power	1. FREQ)	50Hz or 60Hz				
		System	2. G_CT	_RAT	5~10000:5 (5 Step)				
	5. System			1. CON	OFF, PROT_OR, IOCGR, TOCGR				
	Config.	2. T/S OutPut	1. T/S 1~5	2. RST	SELF or MANUAL				
				3. DLY	0.00~60.00Sec (0.01Sec Step)				
		3. Password			New Password :****				
	6. Recorder	1. Display l	Faults		Counter, Element, Time, In				
	o. Recoluct	2. Clear Far	ults		Clear All Faults? Yes or No				
	7. Test	1. Display	Γest		Are you sure to Display Test? Yes or No				
		2. Contact	Γest		T/S 1~5, H.Alarm : on or off				

7. PC Software (SetGDRSeries)

As you change and verify various setting values, fault information, status indications, you can change and verify using PC on the site using this SetGDRSeries. Operate by connecting RS-232C communication port of PC and the RS-232 communication port of the front-side of the relay, and use MODBUS for the communication protocol. Also, RS-485 communication is possible by using the contact at the back. When you change the setting in the relay, you have to repeat changing for each category, but you can process at once using SetGDRSeries, and you can store the operation contents as a file, so it can perform the same operation in the future more easily. All the related operation data is stored as a file, and it can be retrieved.

The following is the default screen when SetGDRSeries is run.

[Figure 7.1] SetGDRSeries Default Screen

7.1 Program Menu

The basic menu of SetGDRSeries is mainly divided to communication port setting menu, file input/output menu, and relay related setting menu, and please refer to [Table 7.1] for the details.

[Table 7.1] SetGDRSeries Program Menus

Program Menu					
— Comm	Selects the communication port of the computer. Refer to 7.3 Communication Port Setting				
Connect	Connects the communication between the ports of the relay and SetGDRSeries, and initializes.				
% Disconnect	Closes the connection of the communication port.				
Device Selecting	Selects the relay to communicate with SetGDRSeries.				
≧ Open	Reads the existing Setting file.				
Save	Stores Setting(System, Protection) contents.				
Report	Stores Setting(Relay Information, System, Protection, Fault) contents as a text file.				
ightharpoonupPC $ ightharpoonup$ Relay	Transmits the System, Protection setting changes to the relay.				
Relay → PC	Bundle uploads the setting contents of the current relay to the SetGDRSeries.				
Exit(<u>X</u>)	Exits the program.				

7.2 Device Selecting

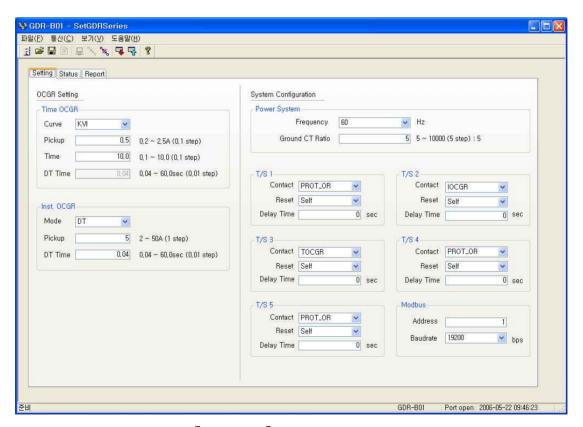
One SetGDRSeries program controls one GDR Series relay, and the relay to be controlled needs to be selected. Press Relay Select() button, and the window to select the relay appears as the following Figure, and selects the relay to be controlled remotely. To communicate with GDR-B01, select GDR-B01, and press "OK" button.

[Figure 7.2] Device Selecting

7.3 Communication Port Configuration

This function select and use other Con-Port when the communication port is occupied by other device and not usable, and can select and use among 15 ports for the communication port. Also, since RS-232C communication protocol uses MODBUS, you can use RS-485 communication for SetGDRSeries.

[Figure 7.3] Communication Port Setting

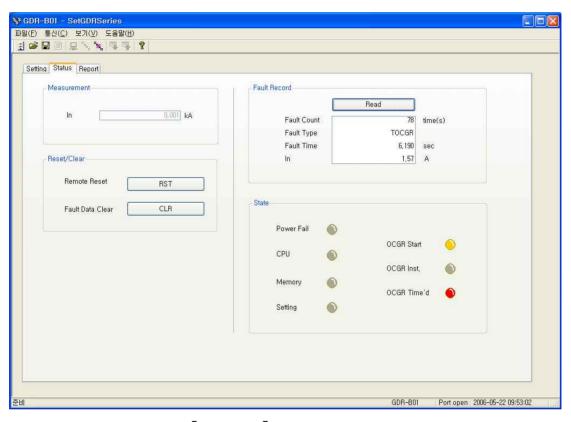

[Table 7.2] Communication Port Configuration

Communication					
Port	COM1 ~ COM15				
	Communication Port				
ADDR	1~254	Used for RS-485C communication			
	Slave Address (MODBUS Protocol) for RS-485C				

7.4 Setting Update Screen

7.4.1 Setting

Setting Screen sets the protection relay element and the categories related to the System Configuration of the relay. Setting categories are mainly composed of Time OCGR(Time ground overcurrent relay element), Inst. OCGR(Instantaneous ground overcurrent relay element), Power System, and T/S Output, and the description of each element is the same as menu screen, so please refer to "6. Display and Setting Mode".

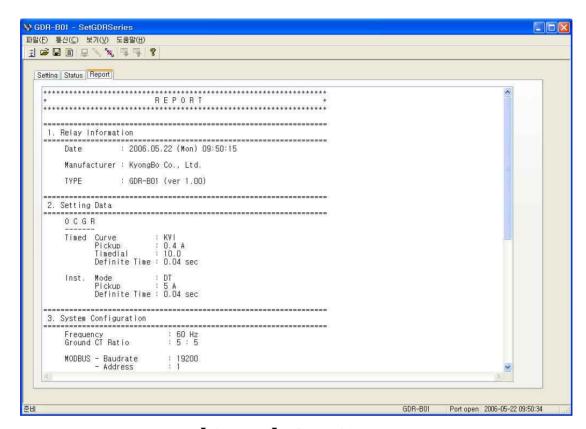


[Figure 7.4] GDR-B01 Setting

7.4.2 Status

Status Screen is composed to view the categories that are displayed in the relay such as Current Measurement, Fault Record, State, etc. in one screen.

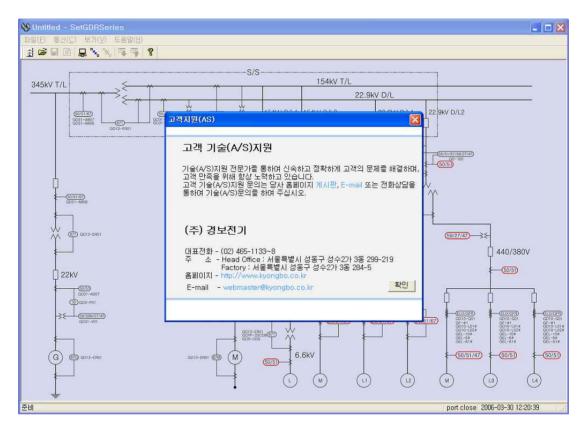
The description of this category is the same as the relay menu, so please refer to "6. Display and Setting Mode".



[Figure 7.5] GDR-B01 Status

- SetGDRSeries Measurement unit is kA.
- Click Read button, then it shows the last fault content stored in the relay.
- Click RST button, then the protection relay element among the **Reset** () **Key** functions of the relay operates, and when Operating Indicator is on, the operation of Indicator Reset can be done remotely at PC.
- Click CLR button, then the same function of **Recorder** ▶ **2.Clear Fault** category of the relay can be done remotely at PC.

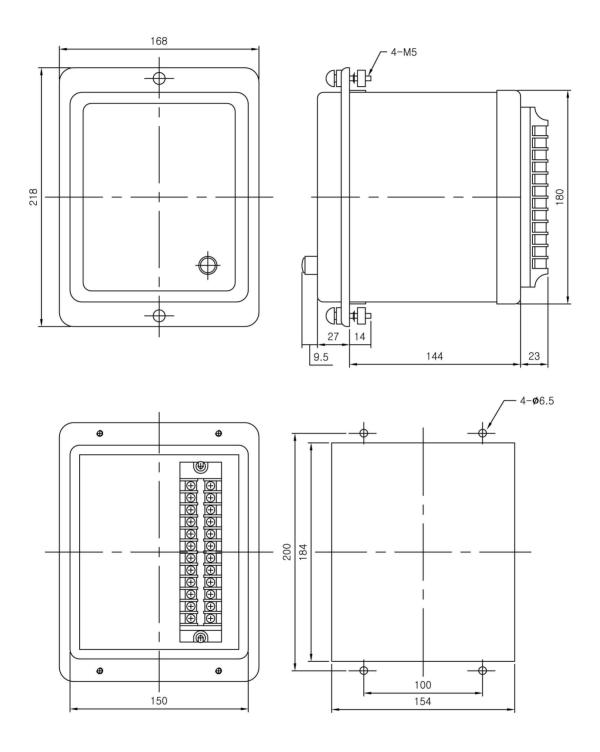
7.4.3 Report


You can store and read the information(Relay Information, Setting Data, System Configuration, Fault Record) of the relay as txt file format through the communication between the relay and PC.

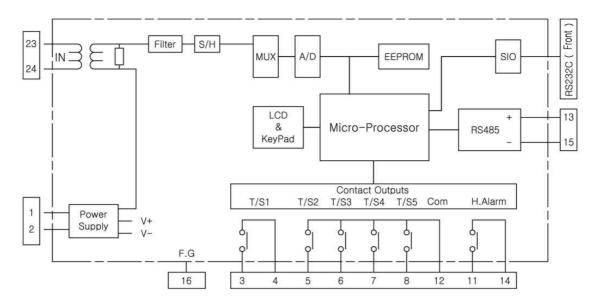
[Figure 7.6] GDR-B01 Report

7.5 Help

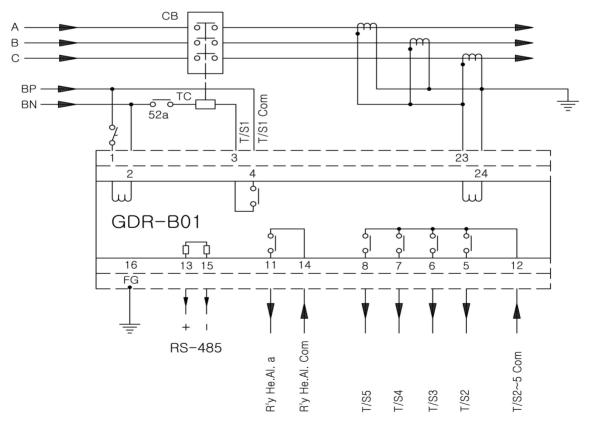
You can find the description of Setting Tool functions, technical assistance(A/S), company's homepage, mail address, address, and phone numbers, etc.



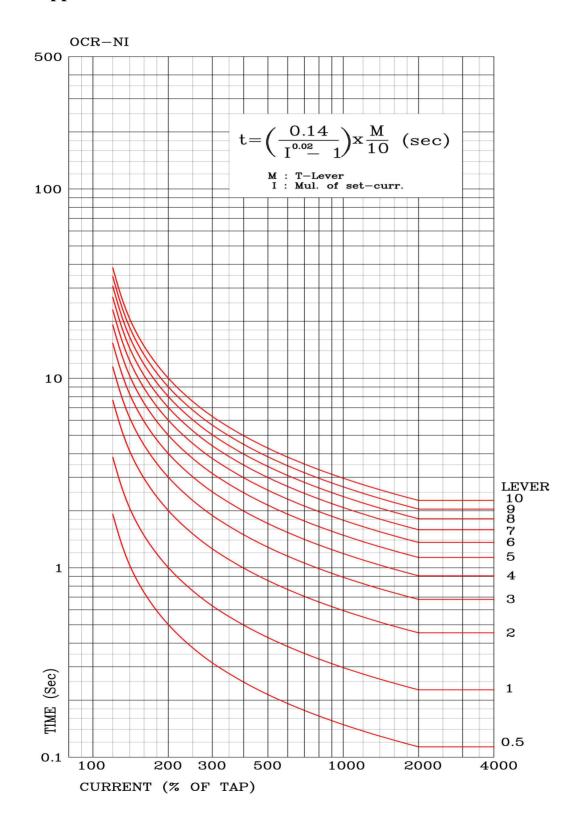
(Figure 7.7) Help


Appendix 1. Factory Default Setting Values

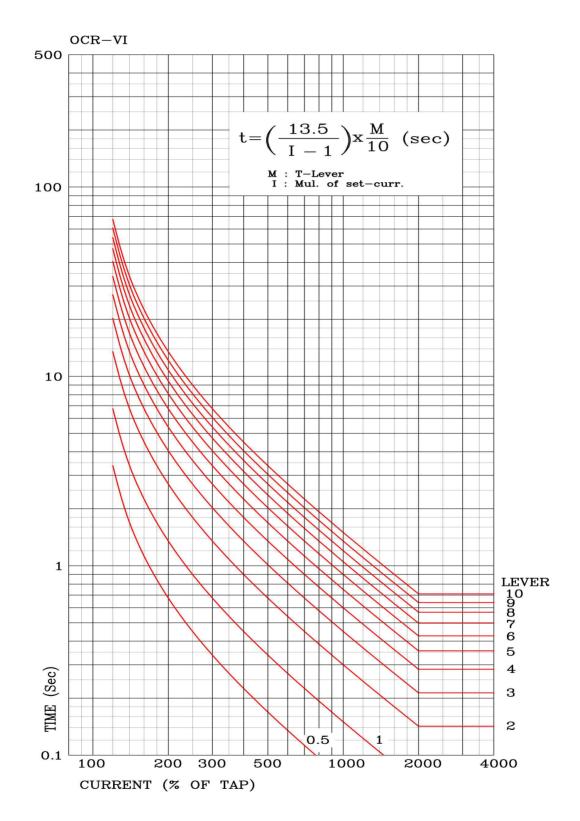
	1. Protection		1. Curve		KVI
		1. Time OCGR	2. PickUp		0.5A
			3. Time Dial		10
			4. DT_Time		_
		2. INST. OCGR	1. Mode		DT
			2. PickUp		5A
			3. DT_Time		0.04Sec
	2. RS-485 comm.	1. Baudrate			19200[bps]
		2. Slave Addr			1
	3. System Config.	1. Power System	1. FREQ		60Hz
			2. G_CT_RAT		5 : 5
		2. T/S OutPut	T/S1	1. CON	PROT_OR
Default				2. RST	SELF
Screen Setting				3. DLY	0.00Sec
(Menu)			T/S2	1. CON	IOCGR
				2. RST	SELF
				3. DLY	0.00Sec
			T/S3	1. CON	TOCGR
				2. RST	SELF
				3. DLY	0.00Sec
			T/S4	1. CON	PROT_OR
				2. RST	SELF
				3. DLY	0.00Sec
			T/S5	1. CON	PROT_OR
				2. RST	SELF
				3. DLY	0.00Sec
		3. Password			0000


Appended 1. Dimensioned Drawings Unit : mm

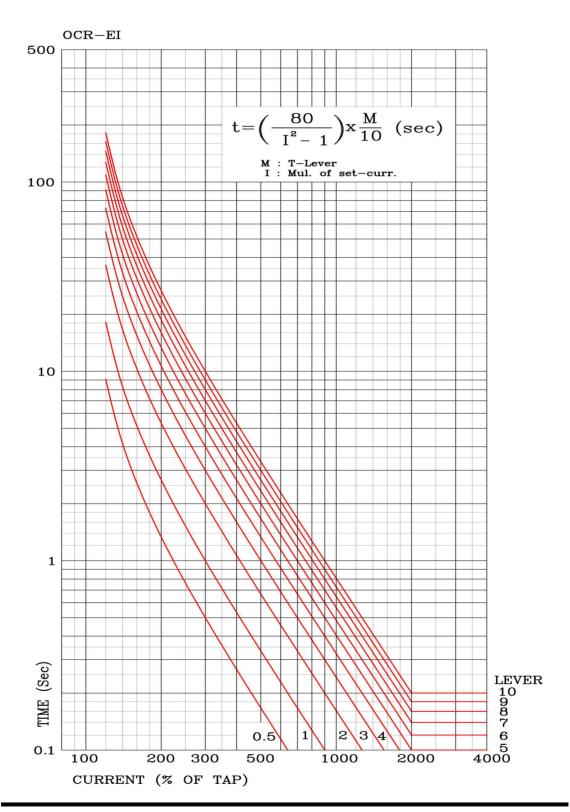
Appended 2. Internal Block Diagram

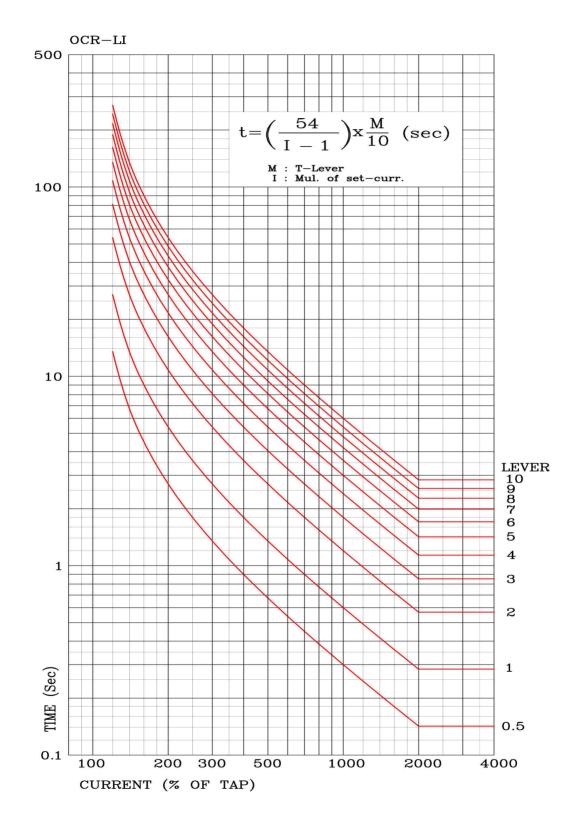


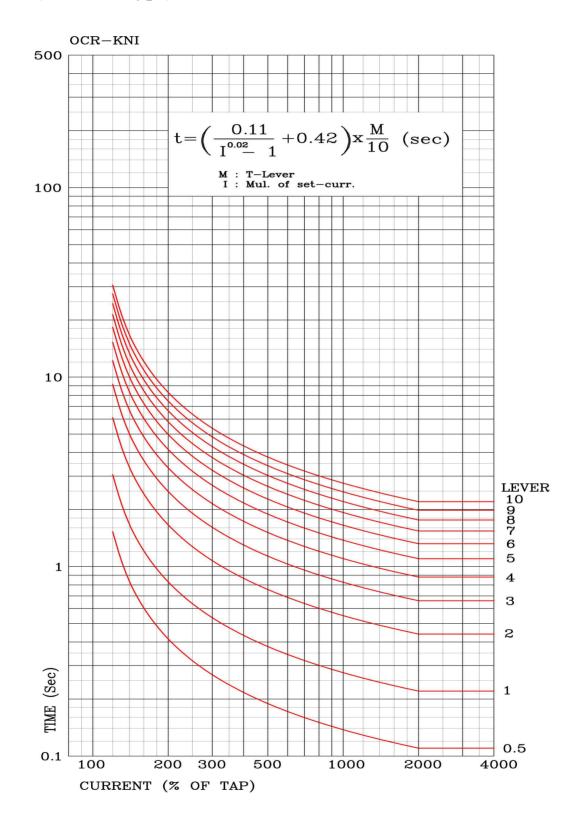
Appended 3. External Connection Diagram

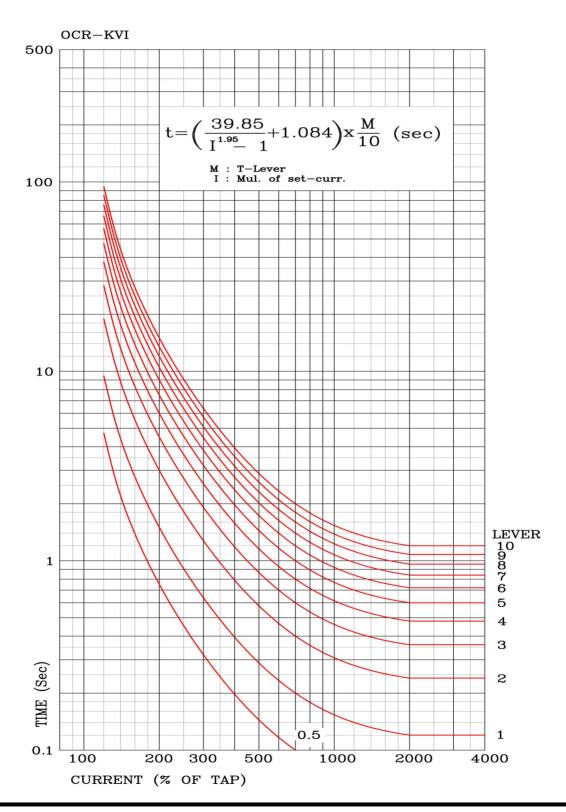


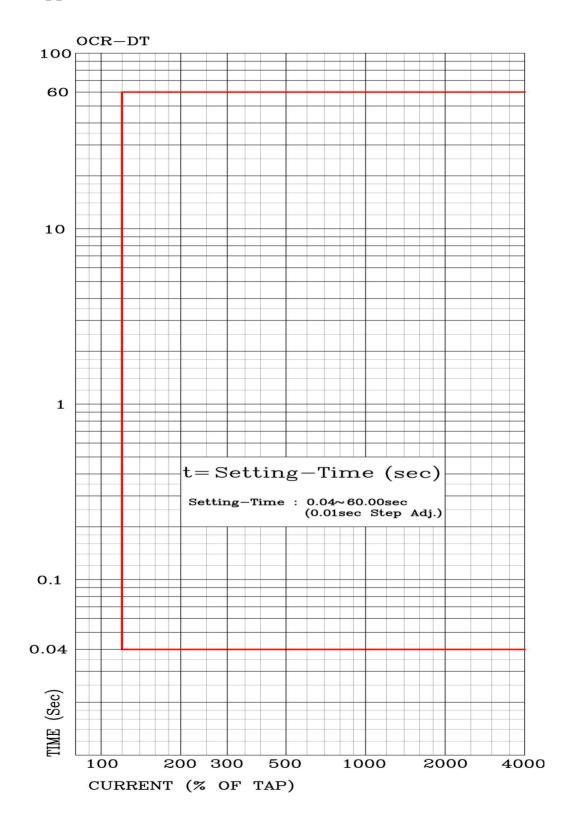
- * Cation: 1) External connection diagram is example.
 - 2) R'y.He.Al contact out status is normal when apply aux. power


Appended 4. Inverse Time Characteristic Curve


Appended 5. Very Inverse Time Characteristic Curve


Appended 6. Extreme Inverse Time Characteristic Curve


Appended 7. Long Inverse Time Characteristic Curve


Appended 8. Kyongbo Induction Type Inverse Time (KEPCO Type) Characteristic Curve

Appended 9. Kyongbo Induction Type Very Inverse Time (KEPCO Type) Characteristic Curve

Appended 10. Definite Time Characteristic Curve

