Digital Feeder 보호용 복합계전기 사용설명서

Digital Feeder Protection Multi Function Relay Manual

TYPE : K-PAM F300

2009. 03. 05 Version 1.00

경 보 전 기 주 식 회 사

안전을 위한 주의사항

사용자의 안전과 재산상의 손해를 막기 위한 내용입니다. 반드시 사용 설명서를 주의 깊게 읽은 후 올바르게 사용하십시오. 사용 설명서는 제품을 사용하는 사람이 잘 볼 수 있는 곳에 보관하십시오.

표시안내

REVISIONS

REV	Date	Description / Reason
1.00	2009. 03. 10	사용설명서 승인, 등록

Standard Compliance

- IEC60255
- **•** KEMC-1120 (2008. 06.26)

목 차

1. 개요 (Overview)	10
1.1 계전기 소개	
1.2 계전기 적용범위	
1.3 계전기 특징	
2. 일반 사양 (General Specification Data)	12
2.1 정격 제어 전원	
2.2 전 압	12
2.3 전 류	12
2.4 출력 접점	
2.5 입력 접점	
2.6 통 신	
2.7 외 함	
2.8 시 험 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2.8.1 절연 시험	
2.8.2 내노이즈 시험	14
2.8.3 기계적 시험	14
2.8.4 온도 및 습도 시험	15
2.9 사용 환경 ······	15
2.10 보호 요소 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15
2.10.1 한시 과전류 요소 (TOCR, 51) ······	
2.10.2 순시 과전류 요소 (IOCR, 50) ······	
2.10.3 한시 지락과전류 요소 (TOCGR, 51N)	
2.10.4 순시 지락과전류 요소 (IOCGR, 50N)	
2.10.5 방향성 한시 지락과전류 요소 (TDOCGR, 67N)	17
2.10.6 방향성 순시 지락 과전류 요소 (IDOCGR, 67N)	17
2.10.7 선택지락 요소 (SGR, 67G) ······	
2.10.7 과전압 요소 (OVR, 59) ······	
2.10.8 저전압 요소 (UVR, 27) ······	
2.10.9 한시 지락과전압 요소 (TOVGR, 64(59G)) ······	19
2.10.10 순시 지락과전압 요소 (IOVGR, 64(59G)) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19
2.10.12 역상 과전압 요소 (NSOVR, 47) ······	19
2.11 부가 기능	
2.11.1 계 측	
2.11.2 차단기 제어	
2.11.3 Event 기록	
2.11.4 고장 파형 기록	
2.11.5 자기 진단	
2.11.6 RS-232C 통신	
2.11.7 RS-485C 동신	

3. 계전기 운영 조작 설명 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	··· 23
3.1 전면 표시 조작부 구성	23
3.1.1 LED / LCD 구성 ······	·· 24
3.1.2 Key Pad / RS-232C / 인출 손잡이 기능	·· 24
3.2 초기화면 및 메뉴 구성 화면	25
3.2.1 초기 표시 상태, 백 라이트 (Backlight) On/Off	25
3.2.2 LED Latch 상태 Clear	25
3.2.2 메뉴 구성 화면	25
3.3 차단기 상태 표시 및 제어	28
3.3.1 차단기 상태 표시	··· 28
3.3.2 LOCAL / REMOTE 제어	·· 28
3.3.3 차단기 차단 / 투입 제어	29
3.4 DISPLAY 기능 조작	·· 30
3.4.1 계측표시	··· 30
3.4.2 계전기 상태표시 (STATUS) ······	32
3.4.2.1 STATUS ► DIGITAL INPUT	32
3.4.2.2 STATUS ► CONTACT OUTPUT	··· 32
3.4.2.3 STATUS ► SELF DIAGNOSIS ······	··· 32
3.4.2.4 STATUS ► PROT CONDITION	33
3.4.2.5 STATUS ► RS-485 MONITOR	33
3.4.3 계전기 기록표시 (RECORD) ······	33
3.4.3.1 RECORD ► EVENT ······	33
3.4.3.2 RECORD ► WAVEFORM	36
3.4.3.3 RECORD ► CB OPEN CNT	36
3.4.4 계선기 Version 표시 (SYS INFO) ······	36
4. 계전기 정정관련설명 (Setting Description) ······	· 37
4.1 PROTECTION ·····	37
4.1.1 과전류 보호 (OCR : 50/51) ······	38
4.1.2 지락과전류, 방향성 지락과전류 보호(OCGR : 50/51N, DOCGR : 67N)…	·· 40
4.1.3 선택지락 과전류보호 (SGR : 67G) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·· 44
4.1.4 과전압보호 (OVR : 59) ······	45
4.1.5 저전압보호 (UVR : 27) ······	46
4.1.6 지락 과전압보호 (OVGR : 64(59G))	··· 47
4.1.7 역상 과전압보호 (NSOVR : 47)	49
4.2 SYSTEM ·····	49
4.2.1 POWER SYSTEM ······	49
4.2.1.1 POWER SYSTEM ▶ FREQUENCY(정격주파수)	49
4.2.1.2 POWER SYSTEM ▶ PT CONNECT(PT 결선)	·· 50
4.2.1.3 POWER SYSTEM ► PT Ratio(PT 비) ······	·· 50
4.2.1.4 POWER SYSTEM ▶ PT SEC (PT 정격)	50
4.2.1.5 POWER SYSTEM ► CT Ratio(CT 出)	50
4.2.2 CB CONTROL ·····	51
4 2 3 T/S OLITPLIT	. 51

4.2.3.1 T/S OUTPUT ► CONNECTION ······	
4.2.3.2 T/S OUTPUT ▶ RESET 설정	
4.2.3.3 T/S OUTPUT ▶ DELAY 설정	
4.2.4 SYSTEM TIME	
4.2.5 WAVEFORM RECORD	
4.2.6 COMMUNICATION	
4.2.7 PASSWORD ······	
4.3 RECORD CLEAR 기능 조작	
4.3.1 CLEAR EVENT ·····	
4.3.2 CLEAR WAVEFORM ······	
4.3.3 CLEAR ENERGY	
4.3.4 SET CB OPEN COUNTER	
4.4 TEST 기능 조작	59
4.4.1 DISPLAY TEST	59
4.4.2 CONTACT TEST	59
5 PC Software (Setting Tool Waveform KbCanes)	
5. Te Software (Setting 1001, Waveform Roleanes)	01
5.1 Setting Tool (KB-IED Manager)	
5.1.1 PC Tool 프로그램 설치 방법 ······	
5.1.2 Setting Tool 프로그램 메뉴 ·····	
5.1.3 통신포트 설정 (Serial Port Configuration)	
5.1.4 Setting Tool 프로그램과 계전기와의 통신 방법	
5.1.5 정정치 변경 화면	
5.1.5.1 System Config	
5.1.5.1 Protection Setting	
5.3.1 Event 화면	
5.3.2 Waveform 화면	
5.3.3 Measurement 화면	
5.3.3 Status(DI)t 화면	
5.2 Waveform 분석 프로그램 (KbCanes)······	
5.2.1 기능 설명	
5.2.2 Analog Digital Valus	
5.2.3 Select	
5.2.4 Harmonic List	
6. 설지 및 결선	
6.1 시수노 (Dimensioned Drawings)	
6.2 우면 단자 배지도	
0.5 외구 걸신노(External Connection) ····································	
0.5.1 K-PAM F300 외부 결전도 ···································	
6.3.2 K-PAM F300 PT 걸신	77
6.3.3 K-PAM F300 CT 걸신 ···································	
0.3.4 입덕 / 술덕 집점 걸신 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	~~
6.3.5 RS-232C 통신 포트 결선 ······	

6.4 모물	둘의 분리 및	교체	
6.4.1	모듈의 분리		
6.4.2	모듈의 교체		
부도 1.	특성 곡선(C	haracteristic Curve)	84
부도 1. 부록 A.	특성 곡선(C 제품 출하 /	haracteristic Curve) ····································	······ 84 ····· 97

1. 개 요 (Overview)

1.1 계전기 소개

K-PAM F300은 Feeder 보호용 복합형 계전기로서 계통의 접지시스템(직접접지, 비접지, 저항접지 등)에 관계없이 배전선로, 변압기의 후비보호/제어/감시용으로 사고가 발생하였을 때 선로를 차단 또는 경보로서 기기 및 전로를 보호할 수 있도 록 설계, 제작되었습니다.

K-PAM F300의 Event/고장파형기록 기능은 고장분석에 필요한 Data 및 계전기의 운 전 이력을 제공하며, Event/고장파형기록은 계전기의 제어전원이 상실되어도 Data는 영구적으로 보존됩니다.

저장된 기록은 통합 PC 프로그램인 KB-IED Manager로 전면 RS-232C 통신 Port를 통해 Data를 Upload한 후 PC 화면에서 분석할 수 있습니다.

K-PAM F300은 LED, LCD를 통한 편리한 메뉴 Tree를 제공하고, 계전기 전면 Key 를 조작하여 기기를 제어할 수 있습니다.

계전기의 후면에는 원격 감시제어 시스템과 연계할 수 있는 RS-485C 포트가 있으 며 원격 시스템용 통신 프로토콜로는 ModBus(RTU)가 내장되어 있습니다.

1.2 계전기 적용범위

< 그림 1. 기능 단선도 >

Device	기 능
50/51	과전류 보호
50N/51N	지락 과전류 보호
67N	방향성 지락 과전류 보호
67G	선택 지락 과전류 보호
59	과전압 보호
27	저전압 보호
64(59G)	지락 과전압 보호
47	역 상과전압 보호

1.3 계전기 특징

- DSP 프로세서를 사용한 디지털 Feeder 보호용 복합 계전기
- 보호계전 요소 : OCR, OCGR, DOCGR, SGR, OVR, UVR, OVGR, NSOVR,
- 다양한 시간 특성의 구현 : IEC표준, 한전 유도형
- 차단기 개방/투입, 현장/원격 등의 제어 가능
- 전기량 계측 기능 : 3상 전류/전압, Sequence 전류/전압, 3상 유효/무효/피상 전력, 전력량, 주파수, 역률
- 계전기 내부 수동 TRIP 지령을 통한 출력접점 TEST 가능
- 정정치 변경 및 차단기 제어 시 암호 입력을 통한 철저한 보안 유지
- 1024개 이벤트 기록 및 최대 6개의 사고파형 기록 (32 Sample/Cycle)
- 강력한 기능의 PC Tool 무상 제공 : 정정치 변경, Event Data 조회, 고장파형 분석, 계전기 상태 및 전기량 계측, 입출력 접점의 Monitoring
- 설정치 및 계측치의 LCD 화면을 통한 디지털 표시 (4 × 20 LCD 화면)
- 다양한 통신 지원
 - 전면부 : RS-232C 1개 (ModBus RTU Protocol : 정정치 변경, Event/고장파형 전송, 전기량 계측 및 계전기 상태 감시)
 - 후면부 : RS-485C 1개 (ModBus RTU : SCADA 통신)
- 자기진단 기능 : 제어전원, Memory, CPU, 정정치 범위, A/D Converter, 아날로그 입력회로 및 디지털 입출력회로
- Flash Memory 사용으로 계전기 Software 업그레이드가 용이
- 제어전원 자유선택 : AC / DC 110 ~ 220V
- 10개의 Relay접점 출력 (T/S Output)을 각각 55개의 Mode로 설정 할 수 있으 며 Alarm으로 모두 사용 가능
 - Trip용 접점(3a), Signal용 접점(6a, 1b)
- 계전기 이상 상태 발생 시 출력접점을 통해 동작 신뢰도 향상
- EMC / EMI 성능 강화
- 적용 규격 : KEMC 1120 (2008. 06. 26), IEC 60255

2. 일반 사양 (General Specification Data)

2.1 정격 제어 전원

정격 제어 정원	AC/DC 110 ~ 220V (free voltage)
과 부 하 내 량	정격 전압의 1.3배 / 3시간
	상 시 30W 이하
	동작시 70W 이하

2.2 전 압

정	격		전	압	AC 63.5 ~ 110V
과	부	하	내	량	정격 전압의 1.15배 / 3시간
부				담	0.5VA 이하 / Phase

2.3 전 류

R R	저겨저		e	전 류	AC 5A	
0	-	안	Ħ	π	영상전류	AC 1.5 mA
					정격 전류의 2배 / 3시간	
_ı		=1 11		전 류	정격 전류의 20배 / 2초	
뽀	무	아내	ţ		정격 전류의 40배 / 1초	
				영상전류	정격 전류의 100배 / 연속	
부			담	0.5VA 01	5F / Phase	

2.4 출력 접점

TRIP	TRIP용 : T/S1 ~ T/S3 접점(1a×3)					
		랴	16A / 연속 / AC 250V			
		0	5 8	30A / 0.3sec / DC125V / 저항부하		
개	로	용	량	5A / 0.1(역률) / AC 250V		
SIGN	SIGNAL용 : T/S4 ~ T/S9 접점(1a×6), T/S10 접점 (1b×1)					
ᆔ	Ŋ	0	다	5A / 연속 / AC 250V		
뾔	노	풍	5	5A / 0.3sec / DC125V / 저항부하		
		0	2 F	1A / 0.1(역률) / AC 250V		
개	도	공	to	1A / 25ms (L/R 시정수), DC 125V		

2.5 입력 접점

개			수	2 Point
입	력	전	압	최대 AC / DC 250V
접 점	반 영	! A	간	10ms 이하

2.6 통 신

전면 RS-232C	1개(유지보수용 / KB-IED Manager용) 19200Bps(고정), 8Bit / No Parity / 1 Stop
전면 RS-485C	1개(SCADA통신용 / Modbus 전용) 300 ~ 19200Bps, 8Bit / No Parity / 1 Stop

2.7 외 함 (Case)

외	함	구	조	매입 인출형(Draw-Out Type)
외	함 Color		Color	Munsell No. N1.5 (검정)
외	함	재	질	Fe (철)
단	ג	4	대	U(Spade) / 링(Ring) 러그 내경 : 5mm, 최대 외경 : 12mm

2.8 시 험

2.8.1 절 연 시 험

				전기회로 대지 간	10MΩ	
절	연 저	항	DC 500V	전기회로 상호 간	5140	IEC60255-5
				전기회로 단자 간	21/125	
				전기회로일괄 대지 간		
상	용 주	파	50/60Hz,	전기회로 상호 간	2kV	ШС(0255 5
내	전	압	1min	통신회로일괄 대지 간		IEC00255-5
				접점회로 단자 간	1kV	
				전기회로일괄 대지 간		
			1.2/50.14	변성기회로 상호 간	5kV	
뇌	임 펄	스	1.2/30µs, 저 . ㅂ그서	변성기회로 제어회로 간		ШС(0)55 5
내	전	압	3・エッ3 ア2司	제어회로 상호 간		IEC00255-5
			- JY	변성기회로 단자 간	3kV	
				제어전원회로 단자 간		

2.8.2 내 노이즈 시험

1 MHz burst	진동주파수 : 1MHz 전압상승시간 : 75ns 바보조파스 : 400Uz	Common mode	2.5kV	IEC60255-22-1	
disturban ce	연곡구파구 : 400Hz 출력임피던스 : 200Ω 인가방법 : 비동기	Differential mode	1.0kV		
EFT /	전압상승시간 : 5ns 반복 주파수 : 2.5kHz	전기 회로	4kV	IEC60255-22-4	
Burst	Burst 유지지간 : 15ms Burst 주기 : 300ms 인가, 휴지 시간 : 1분	통신 회로	2kV	Class A	
Electrosta	인가 회수 : 10회	Air discharge	8kV	IEC60255-22-2 Class III	
uc Discharge	인가 간격 : Isec 인가 부위 : 외함	Contact discharge	6kV		
Lighting			2.0kV 1.0kV 0.5kV	IEC60255-22-5	
Surge	인가 간격 : 30sec 인가 회수 : 3회	Differential mode	1.0kV 0.5kV		
무 선 주 파 방 사 내 력	80MHz ~ 1GH	Iz, 10V/m, 1sec		IEC60255-22-3	
무 선 주 파 전 도 내 성	150kHz ~ 80M	1Hz, 10V, 1sec		IEC60255-22-6	

2.8.3 기계적 시험

<u>न</u>	진 동	진동 응답	10 ~ 150Hz, 0.5G, 전후, 좌우, 상하 1회	IEC60255-21-1
20		진동 내구	10 ~ 150Hz, 1G, 전후, 좌우, 상하 20회	Class
	충격 응답	5G, 전후, 좌우, 상하 3회		
충	충 격	1 충격 내구	충격 내구 15G, 전후, 좌우, 상하 3회	
	어와 미귀	10G, 전후, 좌우, 상하 1000회		
지진	$1 \sim 8.5$ Hz	x : 3.5mm, y : 1.5mm, Sweep : 1회	IEC60255-21-3	
	8.5 ~ 35Hz	x : 1G, y : 0.5G, Sweep : 1회	Class	

2.8.4 온도, 습도 (Temperature, Humidity Test)

ਜ			격	IEC 60068-2-1/2
동	작	온	도	$-25^{\circ}\text{C} \sim 70^{\circ}\text{C}$
보	관	온	도	-30 °C ~ 75 °C
상	대	습	도	RH 30 ~ 95%

2.9 사용 환경

표	고	1000m 이하
וכ	타	이상 진동, 충격, 경사 및 자계의 영향이 없는 상태 폭발성 분진, 가연성 분진, 가연성 / 부식성 가스, 염분 등이 없는 곳

2.10 보호 요소

2.10.1 한시 과전류 요소 (TOCR, 51)

동 작 치	$0.2 \sim 16A \ (0.1A \ \text{Step})$
정한시 동작 시간	$0.04 \sim 60.00$ Sec (0.01Sec Step)
반한시 배율(TM)	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$
동 작 특 성	반한시(NI) 강반한시(VI) 초반한시(EI) 장반한시(LI) 경보유도형 반한시(KNI) 경보유도형 강반한시(KVI) 경보유도형 장반한시(KLNI) 경보유동형 장강반한시(KLVI) 정한시(DT)
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ± 3% 이내

2.10.2 순시 과전류 요소 (IOCR, 50)

동 작 치	$1.0 \sim 100.0A \ (0.5A \ \text{Step})$
순시 동작 시간	\leq 40ms
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$
복귀 지연 시간	$0.00 \sim 200.00$ Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동 작 치 정 밀 도	정정치의 ± 3% 이내

2.10.3 한시 지락과전류 요소 (TOCGR, 51N)

동 작 치	$0.1 \sim 10.0 \text{A} \ (0.1 \text{A} \ \text{Step})$
정한시 동작 시간	$0.04 \sim 60.00$ Sec (0.01Sec Step)
반한시 배율(TM)	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$
동 작 특 성	반한시(NI) 강반한시(VI) 초반한시(EI) 장반한시(LI) 경보유도형 반한시(KNI) 경보유도형 강반한시(KVI) 경보유도형 장반한시(KLNI) 경보유동형 장강반한시(KLVI) 정한시(DT)
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ± 3% 이내

2.10.4 순시 지락과전류 요소 (IOCGR, 50N)

동 작 치	0.5 ~ 50.0A (0.1A Step)
순시 동작 시간	\leq 40ms
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동작치 정밀도	정정치의 ± 3% 이내

2.10.5	방향성	한시	지락과전류	요소	(TDOCGR,	67N)
--------	-----	----	-------	----	----------	------

저류동작치	$0.1 \sim 10.0A$ (0.1A Step)
선 압 농 작 지	$5 \sim 170V (1V \text{ Step})$
방 향	FORWARD, REVERSE
M T A	-90° ~ 90° (1° Step)
동 작 위 상 각	MTA \pm 90°
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$
반한시 배율(TM)	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$
	반한시(NI)
	강반한시(VI)
	초반한시(EI)
	장반한시(LI)
동 작 특 성	경보유도형 반한시(KNI)
	경보유도형 강반한시(KVI)
	경보유도형 장반한시(KLNI)
	경보유동형 장강반한시(KLVI)
	정한시(DT)
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동 작 치 정 밀 도	정정치의 ± 3% 이내

2.10.6 방향성 순시 지락과전류 요소 (IDOCGR, 67N)

전 류 동 작 치	0.5 ~ 50.0A (0.1A Step)
전 압 동 작 치	5 ~ 170V (1V Step)
방 향	FORWARD, REVERSE
M T A	-90° ~ 90° (1° Step)
동 작 위 상 각	$MTA \pm 90^{\circ}$
순시 동작 시간	$\leq 40 \mathrm{ms}$
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$
복귀 지연 시간	$0.00 \sim 200.00$ Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동 작 치 정 밀 도	정정치의 ± 3% 이내

2.10.7 선택지락 요소 (SGR, 67G)

전 류 동 작 치	0.9 ~ 250.0mA (0.1mA Step)
전 압 동 작 치	5 ~ 170V (1V Step)
M T A	-90° ~ 90° (1° Step)
방 향	FORWARD, REVERSE
동 작 위 상 각	$MTA \pm 90^{\circ}$
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$
반한시 배율(TM)	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$
복귀 지연 시간	0.00 ~ 200.00Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동 작 치 정 밀 도	정정치의 ± 3% 이내

2.10.8 과전압 요소 (OVR, 59)

동 작	치	5 ~ 170V (1V Step)			
정한시 동작 시	간	$0.04 \sim 60.00$ Sec (0.01Sec Step)			
반한시 배율(T	M)	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$			
복귀 지연 시	간	0.00 ~ 200.00Sec (0.01Sec Step)			
복 귀	치	정정치의 95% 이상			
동작치 정밀	도	정정치의 ± 3% 이내			

2.10.9 저전압 요소 (UVR, 27)

동 작	치	5 ~ 170V (1V Step)		
정한시 동작 시	간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$		
반한시 배율(T]	M)	$0.05 \sim 10.00 \ (0.05 \ \text{Step})$		
복귀 지연 시	간	0.00 ~ 200.00Sec (0.01Sec Step)		
복 귀	치	정정치의 95% 이상		
동작치 정밀	도	정정치의 ± 3% 이내		

2.10.10 한시 지락과전압 요소 (TOVGR, 64(59G))

동 작 치	5 ~ 170V (1V Step)	
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$	
반한시 배율(TM)	0.05 ~ 10.00 (0.05 Step)	
동 작 특 성	트립용 반한시(NI_TRIP) 알람용 반한시(NI_ALARM) 정한시(DT)	
복귀 지연 시간	$0.00 \sim 200.00$ Sec (0.01Sec Step)	
복 귀 치	정정치의 95% 이상	
동 작 치 정 밀 도	정정치의 ± 3% 이내	

2.10.11 순시 지락과전압 요소 (IOVGR, 64(59G))

동	작	치	10 ~ 170V (1V Step)		
순 시	동 작 시	시 간	$\leq 40 \mathrm{ms}$		
정 한 시	동작 /	시간	$0.04 \sim 60.00$ Sec (0.01Sec Step)		
복 귀	지연 시	시 간	0.00 ~ 200.00Sec (0.01Sec Step)		
복	귀	치	정정치의 95% 이상		
동 작 쳐	치 정 밑	I 도	정정치의 ± 3% 이내		

2.10.12 역상 과전압 요소 (NSOVR, 47)

동 작 치	5 ~ 170V (1V Step)
정한시 동작 시간	$0.04 \sim 60.00 \text{Sec} (0.01 \text{Sec Step})$
복귀 지연 시간	$0.00 \sim 200.00$ Sec (0.01Sec Step)
복 귀 치	정정치의 95% 이상
동 작 치 정 밀 도	정정치의 ±3% 이내

2.11 부가 기능

2.11.1 계 측

전 압	3상 전압 / 선간전압 실효치 및 위상 영상 전압 실효치 및 위상 계측 범위 : 0 ~ 250V (PT Ratio 1:1일 때)
상 전 류	전류 실효치 및 위상 계측 범위 : 0 ~ 250A (CT Ratio 5:5일 때)
ZCT 전류 (Is)	ZCT 2차측 영상 전류 실효치 및 위상 전용 ZCT 사용 계측 범위 : 0 ~ 1000mA
Sequence 전압	정상, 역상, 영상전압 실효치 및 위상
Sequence 전류	정상, 역상, 영상전류 실효치 및 위상
주 파 수	A상 전압기준 계측 범위 : 30.000 ~ 100.000Hz
전 력	각 상 / 3상 유효 전력 (0 ~ 62500W) 각 상 / 3상 무효 전력 (0 ~ 62500Var) 각 상 / 3상 피상 전력 (0 ~ 62500VA)
전 력 량	3상 유효 / 무효 전력량
역 률	각 상 / 3상 역률

2.11.2 차단기 제어

개 수	1CB
LOCAL 제어	제어 KeyPad를 통해서 제어 Password 입력에 의한 오조작 방지
REMOTE 제어	후면 RS-485C 통신포트를 통해서 제어 가능

2.11.3 Event 기록

최대 기록 수	1024개
분 해 능	10ms 단위
Event 항목	보호 계전요소 Pickup / Release / Operation, CB Status 변화, 자기 진단 ERROR 발생, SETTING 변경, Event Clear, Waveform Clear, Energy Clear, Annunciator Reset 제어전원 Power On/Off, Waveform Capture, 차단기 제어
특 징	보호 계전 요소 Event 발생 시 전기량 기록 (Event발생시간, 전압, 전류 실효치 및 위상) 제어 전원이 상실되더라도 DATA 유지 *.TXT 파일로 저장 가능

2.11.4 고장파형 기록

최대 기록 수	6개	
Recording Type	168cycle × 6개	
Sampling 횟수	32Sample/Cycle	
하 모 서 저	T_POS	0 ~ 99% (1% STEP)
	T_SRC	OP, PKP, OP+PKP
In / Is	In / Is	
РС표시 항목	각 상 전류 (크기, 위상, 고조파, 외형률) 각 상 전압 (크기, 위상, 고조파, 외형률) 영상 전류(In or Is) 접점 출력 상태 접점 입력 상태 보호 계전 요소 상태	
계전기 표시 항목	Trigger 시간, T_S	SRC, 보호 계전 요소, Recording Type
Data 유지	제어 전원이 상실되더라도 DATA 유지 *.cfg, *.data 파일로 저장 가능 Comtrade file Format(IEEE C37.111) 형식지원	

2.11.5 자기 진단

하 목	DC Power, CPU Watchdog, Memory, Setting Error, A/D Converter Error, DI/O Circuit
이상 발생 표시	전면부 적색 ERROR LED 혹은 SYSTEM_ERR T/S OUTPUT 정정을 이용하여 출력접점으로 표시 가능

2.11.6 RS-232C 통 신

본 제품에서 제공하는 RS-232C 통신 케이블은 2번 핀과 3번 핀이 엇갈린 크로 스케이블을 사용하고 있으므로 엇갈림이 없는 일반적인 다이렉트 케이블 사용 시 통신이 이루어지지 않습니다.

PC에 RS-232C포트가 없어 USB포트를 사용하실 경우 USB TO 232케이블만으로 는 연결이 되지 않으며 USB TO 232케이블의 232포트에 본 제품에서 제공하는 크로스케이블을 연결하여 사용하셔야 합니다.

프 로 토 콜	통신방식	RS-232 / RS-485
	지원 프로토콜 🗨	MODBUS
	통신거리	• 1.2km
	통신 선 로 🖣	비용 RS-485C Two-Pair cable
통신 규격 (RS-485C)	통신속도 •	• 300 ~ 19,200 bps
	전 송 방 식 🗨	Half-Duplex
	최대 입출력 전압 🛛	• -7V ~ +12V
통신 포트	전면표시부	RS232 포트 1개
	•	● 19200 BPS 고정, MODBUS 프로토콜
	•	▶ RS485 포트 1개
		• 300 ~ 19200 BPS, MODBUS 프로토콜
	우면	• 상위 SCADA 통신
		• 단자 번호 : 51(+), 52(-), 53(Com)

2.11.7 RS-485C 통 신

상위 감시 제어 시스템과의 연결을 위해 절연된 RS-485 Half Duplex 통신방식을 제공합니다. 이 통신방식은 멀티드롭으로 연결할 수 있으며, 통신거리는 최대 1.2km까지입니다. RS-485C선로의 종단은 120요 저항을 병렬로 연결합니다.

3. 계전기 운영조작 설명 (Operational Description)

3.1 전면 표시 조작부 구성

K-PAM F300의 전면 표시조작부는 LCD(4×20), 16개의 LED, 10개의 키패드 (KeyPad) 버튼 및 RS-232C 통신포트로 구성되어 있습니다. 계전기 전면부에는 투 명 Cover가 부착되어 있어 먼지나 이물질이 계전기에 침투하는 것을 방지하며, 사용자의 부주의로 인한 계전기 전면부의 파손을 미연해 줍니다. 또한, 정정치 변경 또는 차단기 제어 시 Password 입력으로 오조작 방지 및 지정된 사용자 외 에 임의의 사람이 조작하지 못하도록 되어 있습니다. LCD를 통해 운전정보를 조 작하는 동안에도 보호기능은 계속 수행합니다.

KeyPad를 이용한 조작이외에 전면 RS-232C 포트를 이용하여 KB-IED Manager(PC Software)를 연결하면 PC로 보다 편리하게 정정치 변경, Event/고장파형 전송 등 의 작업이 가능합니다.

< 그림 2. 전면 표시부 >

LED / LCD)	기 능	
(1) LCD			설정값, 계측값, 운전화면 표시	
(2) PWI	R	녹 색	제어전원 인가 시 LED 점등	
(3) RUN 녹색		녹 색	계전기의 CPU가 정상적으로 RUN하고 있음을 나타내는 LED로 정상적인 상태에서 점등	
(4) ERR 적색 적		적 색	계전기 자기진단 이상 때 LED 점등 "RESET" Key를 통한 수동리셋으로 LED상태 복귀	
(5) P / U 황색		황 색	보호 요소 픽업 때 LED 점등	
(6) TRIP 적 산		적 색	보호 요소(OCR, OCGR, DOCGR, SGR, OVR, UVR, OVGR, NSOVR) 동작 때 LED 점등 "RESET" Key를 통한 수동리셋으로 LED상태 복귀	
(11) 차단기 제어	Local	적색	- Local / Remote 제어 가능상태 표시	
	Remote	녹색		
	OPEN	녹색	차단기가 개로상태일 때 점등	
	CLOSE	적색	차단기가 폐로상태일 때 점등	

3.1.1 LED / LCD 기능

3.1.2 Key Pad / RS-232C / 인출 손잡이 기능

KeyPad		기 능	
(7) 방향키 🥚 (UP)		메뉴이동, 정정치 범위 변경	
	(DOWN)	메뉴이동, 정정치 범위 변경	
	(RIGHT)	메뉴이동, 메뉴 항목 선택	
(LEFT)		메뉴이동, ESC(상위 메뉴 이동, 항목취소)	
(8) (RESET)		"ERROR"LED 및 "TRIP"LED 수동리셋	
(9) (MENU)		초기화면에서 Menu Tree 화면으로 이동	
(10) 🔍 (ENTER)		정정치 입력 및 Command Menu Yes/No Confirm	
(11) 제어	LR (Local/Remote)	Local/Remote 제어 위치 변경	
	• (OPEN)	차단기 개방 제어	
	CLOSE)	차단기 투입 제어	
(12) RS-232C 통신포트		KB-IED Manager 연결 용	
(13) 인출 손잡이		계전기 인출 시 사용되는 손잡이	

3.2 초기화면 및 메뉴 구성 화면

3.2.1 초기 표시 상태, 백 라이트 (Backlight) On/Off

K - P A M F 3 0 0 V 1 . 0 S y s t e m O K !

< 그림 3. 초기화면 >

초기화면에는 계전기에 이상이 있을 때는 "System OK!" 대신 "System Error!" 가 표시됩니다.

LCD의 Backlight는 Key 조작 없이 3분이 지나면 자동으로 OFF 되며 계측치가 자동으로 순환합니다.

3.2.2 LED Latch 상태 Clear

■ OCR/OCGR/SGR/OVR/UVR/OVGR/NSOVR LED Clear

보호요소 동작 LATCH LED로 한번 동작하면 **RES**(RESET) Key를 누르기 전 까지 점등되어 있습니다.

LED Clear는 모든 보호/검출요소가 복귀한 상태에서 **RES**(RESET) Key를 누르면 Clear 됩니다.

• "ERROR" LED Clear

"ERROR" LED는 자기진단 상태 표시의 대표 LED로 1개 이상의 자기진단요소 가 동작할 경우 점등됩니다.

"ERROR" LED Clear는 모든 자기진단요소가 복귀한 상태에서 **RES**(RESET) Key를 누르면 Clear 됩니다.

3.2.3 메뉴 구성 화면

메뉴구성 화면은 상태(STATUS), 계측(METERING), 기록(RECORD), 계전기 버전(SYS INFO) 등을 표시하는 DISPLAY MODE 블록과 계전기의 정정치 및 보호요소의 정정치, Energy량(유효/무효전력량) 및 Event, 고장파형 Data의 초기화, 차단기의 OPEN 카운터 설정, 출력접점의 Test, 계전기 전면부 Test 등 을 설정/표시하는 SETTING MODE 블록 나뉘어 있습니다. ■ 메뉴트리 Key 조작

초기화면에서 **MEN**(MENU) Key를 누르면 메뉴구성 화면으로 전환됩니다. 메뉴구성 화면을 참조하여 UP(), DOWN(), RIGHT(), LEFT() Key를 통해서 원하는 메뉴를 선택합니다.

(M1) 초기화면에서 Event 화면으로 이동할 경우
MEN(MENU) Key ⇒ RIGHT() DISPLAY MODE ⇒ RIGHT() Key
(Measurement) ⇒ DOWN() Key(Status) ⇒ DOWN() Key(RECORD) ⇒
RIGHT() Key(EVENT Record) ⇒ RIGHT() Key(EVENT)

K-PAM F300의 전체 메뉴 구성은 다음과 같습니다.

< 그림 4. F300 Menu Tree >

메뉴구성 항목의 세부항목 설명은 다음과 같습니다.

		Measurement		전기량 계측
		STATUS	DIGITAL INPUT	접점입력 상태
			CONTACT OUTPUT	접점출력 상태
			SELF_DIAGNOSIS	자기진단 상태
	DISDI AV		Prot Condition	보호요소 상태
	DISFLAT		RS-485 Monitor	RS-485 통신 상태
		RECORD	EVENT	Event 발생 내역
			WAVEFORM	고장파형 저장 내역
			CB OPEN CNT	CB OPEN COUNTER 갯수
		SYS INFO		DSP S/W 버전 정보
			OCR(50/51)	단락과전류 보호 정정
			OCGR(50N/51N,67N)	(방향성)지락과전류 보호 정정
		Protection	SGR(67G)	선택지락과전류 보호 정정
초			OVR(59)	과전압 보호 정정
フ			UVR(27)	저전압 보호 정정
화			OVGR(64(59G))	지락과전압 보호 정정
면			NSOVR(47)	역상과전압 보호 정정
		SYSTEM	POWER SYSTEM	전력시스템 및 결선 정정
			CB CONTROL	차단기 상태 표시 및 제어 정정
	GETTNIC		T/S OUTPUT	T/S 접점 정정
	SETTING		SYSTEM TIME	계전기 시각 정정
			Waveform Record	고장파형 기록 정정
			COMMUNICATION	RS-485 통신 정정
			PASSWORD	정정/제어 암호 정정
		Record Clear	Clear Event	Event Data 삭제
			Clear Waveform	고장파형 Data 삭제
			Clear Energy	전력량 Data 삭제
			SET CB OPEN CNT	차단기 차단회수 카운터 설정
		TEST	DISPLAY Test	계전기 전면부 LCD / LED Test
			CONTACT Test	접점출력 Test

3.3 차단기 상태 표시 및 제어

차단기를 제어하기 위해서는 <u>SETTING/SYSTEM/CB Control</u> 기능을 사용 "ENABLE"으로 설정해야 차단기의 제어를 할 수 있습니다. 현장에서 차단기 제어, LOCAL/REMOTE 변경을 하려면 KEY_CONTROL항목이

"ENABLE"되어 있어야 KEY가 응동합니다.

3.3.1 차단기 상태 표시

차단기의 상태 표시는 LED로 확인 할 수 있습니다. 입력접점으로 52a접점과 52b접점의 상태를 입력받아서 차단기의 상태를 LED로 확인 할 수 있습니다.

LED		
CB OPEN(•) LED	CB CLOSE(C) LED	사연기 정대
점등	소등	차단기가 개로 상태
점멸	점멸	차단기 이상 상태
소등	소등	차단기 Function DISABLE
소등	점등	차단기 폐로 상태

3.3.2 LOCAL / REMOTE 제어

현장에서 차단기를 제어할 경우 제어권한이 현장(Local)으로 되어있어야 하고, RS-485C 통신을 통해 원방에서 차단기를 제어할 경우 제어권한이 원방(Remote) 으로 되어 있어야 합니다.

차단기 제어권한 변경은 현장에서만 가능합니다.

제어권한 설정을 변경할 경우에는 **L/R**(Local/Remote) Key를 눌러서 제어권한을 변경해야 합니다.

차단기 제어 권한 변경은 아래와 같습니다. 【/R (Local/Remote) Key ⇒ Password 입력 ⇒ ENT (ENTER) Key ⇒ 【/R (Local/Remote) Key 순의 조작으로 가능합니다.

여기서 Password입력 후 **ENT**(ENTER) Key를 누르면 현재의 차단기 상태(OPEN, CLOSE, TROUBLE)와 차단기 제어권한의 상태를 LCD로 표현하여 줍니다.

차단기 제어권한이 변경될 시 바로 LED로 확인할 수 있습니다. 초기화면으로 이동하고자 하면 LEFT() Key를 누르거나 1분 후 초기화면으로 이동합니다.

3.3.3 차단기 차단 / 투입 제어

현장에서 차단기를 제어(차단/투입)하려면 차단기의 제어권한을 현장(Local)으로 되어 있는 상태에서 다음과 같이 조작을 하시면 됩니다.

 OPEN Key 또는 CLOSE Key ⇒ Password 입력 ⇒ ENT(ENTER) Key ⇒ 사용

 자의 의도에 맞게 OPEN Key 또는 CLOSE Key ⇒ 최종 차단기 OPEN /

 CLOSE를 실행할지를 묻는 문구가 LCD 화면에 표시, "NO", "YES"화면 점멸

 ⇒ UP(●) 또는 DOWN(●) Key로 "YES" 변경 ⇒ ENT(ENTER) Key로 출력

여기서 Password입력 후 ENT (ENTER) Key를 누르면 현재의 차단기 상태(OPEN, CLOSE, TROUBLE)와 차단기 제어권한의 상태를 LCD로 표현하여 주고 차단기 차단/투입 제어를 마치고자 한다면 LEFT() Key를 누르면 바로 초기화면으로 이동하고 아무 키도 누르지 않고 1분이 지나면 초기화면으로 이동합니다.

최종적으로 출력을 묻는 화면에서 "NO"를 선택하면 출력되지 않습니다.

"YES"에서 ENT(ENTER) Key를 누르면 제어명령이 설정된 출력 접점이 동작합니다. 현장(Local) 차단기 제어 때에는 반드시 Password를 입력해야 합니다.

원방(Remote)에서 차단기 제어를 원할 경우에는 차단기 제어권한 변경 방법을 통해 차단기의 제어권한을 원방(Remote)상태로 만든 후 RS-485C 통신을 통해 상위 통신 또는 SCADA에서 제어할 수 있습니다.

3.4 DISPLAY 기능 조작

DISPLAY에서는 전기량 계측, 접점의 입출력 상태, 자기진단 상태, 보호요소의 동작 상태, Event 및 고장파형, 계전기의 버전정보를 확인할 수 있습니다.

3.4.1 계측표시

DISPLAY/Measurement에서는 각종 계측치를 확인할 수 있습니다.

PT 결선이 NONE일 경우 위상표시의 기준은 A상 전류이고, PT 결선이 WYE 또는 DELTA일 경우에는 A상 전압이 기준이 되며, 전압/전류/전력의 크기는 PT Ratio, CT Ratio의 비를 적용한 1차측 값으로 표시합니다.

PT 결선이 WYE일 경우에는 계전기에 입력되는 전압을 상전압으로 인식하여 계전기 내부연산을 통해 선간전압을 표시하며, PT 결선이 DELTA인 경우에는 계전기에 입력되는 전압을 선간전압으로 인식하여 상전압을 표시하지 않으며, Sequence 전압의 영상분 크기를 0으로 표시합니다.

각 상, 3상의 유효/무효/피상전력의 크기는 PT 결선이 WYE일 경우에만 계측값을 표시하며 계산 방식은 아래와 같습니다.

<u>유효전력 : P = V×I×cosθ</u>, <u>무효전력 : Q = V×I×sinθ</u>, <u>피상전력 : S = V×I</u>

PT 결선이 DEL일 경우에는 3상 유효/무효/피상전력 크기를 표시하고 각상의 크기는 0으로 표시합니다.

Sequence 전압/전류의 계산 방식은 아래와 같습니다.

영상분 전압크기 =
$$\frac{1}{3}(\nabla_A + \nabla_B + \nabla_C)$$

영상분 전류크기 = $\frac{1}{3}(\Gamma_A + \Gamma_B + \Gamma_C)$
정상분 전압크기 = $\frac{1}{3}(\nabla_A + a\nabla_B + a^2\nabla_C)$
정상분 전류크기 = $\frac{1}{3}(\Gamma_A + a\Gamma_B + a^2\Gamma_C)$
역상분 전압크기 = $\frac{1}{3}(\nabla_A + a^2\nabla_B + a\nabla_C)$
역상분 전류크기 = $\frac{1}{3}(\Gamma_A + a^2\Gamma_B + a\Gamma_C)$
여기서 a = 120°, a² = 240°

≪☞ 경보전기[주]

유효/무효전력의 부호 표시 및 역률 표시는 다음과 같습니다.

<그림 5. 유효/무효전력의 부호 및 역률 표시>

계측표시 상세 내역은 다음과 같습니다.

항 목	설명		
VA, VB, VC, VN	A상, B상, C상, N상 Primary 전압 크기 및 위상		
VAB, VBC, VCA AB상, BC상, CA상 Primary 선간전압 크기 및 위			
IA, IB, IC, IN	A상, B상, C상, N상 Primary 전류 크기 및 위상		
Is	ZCT 2차측 전류 크기 및 위상		
V0, V1, V2	Primary 영상분, 정상분, 역상분 전압 크기 및 위상		
10, 11, 12	Primary 영상분, 정상분, 역상분 전류 크기 및 위상		
WATT_A, B, C	A상, B상, C상 Primary 유효전력 크기		
WATT_T	3상 Primary 유효전력 크기		
VAR_A, B, C	A상, B상, C상 Primary 무효전력 크기		
VAR_T	3상 Primary 무효전력 크기		
VA_A, B, C	A상, B상, C상 Primary 피상전력 크기		
VA_T	3상 Primary 피상전력 크기		
PF_A, B, C	A상, B상, C상 Primary 역률 크기		
PF_T	3상 Primary 역률 크기		
Watth	h 유효전력량		
Varh	무효전력량		
FREQ	VA상 전압 주파수 크기		

3.4.2 계전기 상태표시 (STATUS)

<u>DISPLAY/STATUS</u>에서는 입출력 접점의 동작상태, 자기진단 상태, 보호요소, RS-485통신 상태의 동작여부를 알 수 있습니다.

화면에 나타나지 않은 상태 정보는 UP(), DOWN() Key를 이용하여 확인할 수 있습니다.

3.4.2.1 STATUS ► DIGITAL INPUT

<u>DISPLAY/STATUS/DIGITAL INPUT</u>에서는 52a 접점과 52b 접점의 현재 입력 상태를 확인할 수 있습니다. 접점입력은 입력이 LOGIC 1일 경우 "Ene"으로, LOGIC 0일 경우 "DeE"로 표시

접점입뎍는 입뎍이 LOGIC T일 경우 "Ene"으도, LOGIC 0일 경우 "DeE"도 표시 됩니다.

3.4.2.2 STATUS ► CONTACT OUTPUT

DISPLAY/STATUS/CONTACT OUTPUT에서는 접점출력 10개의 현재 출력상 태를 확인할 수 있습니다. 접점출력은 출력이 이루어졌을 경우 "Ene"로 표시되 고, 출력이 이루어지지 않았을 경우에는 "DeE"로 표시됩니다.

3.4.2.3 STATUS ► SELF DIAGNOSIS

DISPLAY/STATUS/SELF DIAGNOSIS에서는 자기진단 상태를 확인할 수 있습니다. 자기 진단 기능은 계전기의 운전 상태를 상시 감시하여 기기의 오부동작을 방지하기 위한 것입니다. 각 항목별로 정상 시에는 "OK"로 표시되고, 계전기에 이상이 검출되면 "ERR"로 표시되고 계전기 전면에 있는 "ERROR" LED가 점등됩니다.

계전기에 이상이 발생되었을 때 보호요소의 동작이 즉시 저지되고, 이상발생 표 시는 이상상태가 제거될 때까지 LCD 및 LED에 표시합니다.

사용자가 이상 상태를 확인하고 적절한 조치를 취한 다음 이상 원인이 제거된 후 "RESET" Key를 누르면 계전기 전면 "ERROR" LED가 소등되고 Status 메뉴에 있는 SELF DIAGNOSIS의 이상 항목도 "OK"로 바뀌게 됩니다.

계전기에 이상이 발생하면 사용자는 <u>DISPLAY/STATUS/SELF DIAGNOSIS</u>를 확 인하여 자기진단 항목 중 어느 항목에 이상이 있는지 확인하시고, 당사 A/S 부서 로 연락하시면 적절한 조치를 받으실 수 있습니다. 제품의 불완전한 상태에서 계전기의 제어전원을 Off-On하는 등의 행위는 지양해 주시기 바랍니다. 당사 A/S 부서의 연락처는 02-465-1133(내선번호 129번)입니다. 주요 진단 항목은 다음과 같습니다.

■ 메모리 이상 감시 (MEMORY)

- 정정치 이상 감시 (SETTING)
- A/D 변환기 이상 감시 (ADCONVERTER)
- DC Power 이상 감시 (DC POWER)
- CPU 이상 감시 (CPU EXCEPT.)
- Digital 입/출력 이상 감시 (DO/I CIRCUIT)

3.4.2.4 STATUS ► PROT CONDITION

DISPLAY/STATUS/PROT CONDITION에서는 보호요소의 Pickup 및 동작 상태 을 확인할 수 있습니다. 동작상태 표시는 3상 보호요소인 경우 그 상으로 표시가 되는데 만약 A상이 동작되면 "A"로 표시되고, 단상 보호요소인 경우는 "OP"로 표시됩니다.

3.4.2.5 STATUS ► RS-485 MONITOR

DISPLAY/STATUS/RS-485 MONITOR에서는 RS-485 통신 상태를 TXD, RXD 로 구분하여 확인할 수 있습니다. 데이터를 수신하였을 때에는 RXD 항목에 "Receive"항목을 표시하고 송신하였을

데이터를 주신하였을 때에는 RXD 양쪽에 "Receive"양쪽을 표시하고 공신하였을 때에는 TXD 항목에 "Send"표시합니다.

3.4.3 계전기 기록표시 (RECORD)

DISPLAY/RECORD에서는 Event 발생 내역과 고장파형 저장 정보, CB OPEN 회수 정보를 확인할 수 있습니다.

3.4.3.1 RECORD ► EVENT

<u>**DISPLAY/RECORD/EVENT</u>에서는 K-PAM F300의 메모리에 저장된 최대 1024</u> 개의 Event 발생 정보를 확인할 수 있습니다.</u>**

모든 Event 기록은 10ms의 분해능으로 발생 시각 정보와 함께 기록되며 기록된 Data는 FIFO(First In, First Out) 방식으로 관리되어 가장 최신의 정보가 처음에 표시되며, 기록된 Event Data는 제어전원이 상실되어도 영구적으로 보존됩니다. Event 기록 항목에는 제어전원 ON/OFF, 보호요소 동작상태, 입출력 접점상태,

차단기 제어, 설정값 변경, 감시/진단 상태, Event 기록 삭제, 고장파형기록 삭제, 전력량기록 삭제 등이 있습니다.

보호요소 동작상태 Event 기록은 고장정보(전압/전류 실효치 크기 및 위상)를 함 께 기록합니다. Event 기록은 LCD 창을 통해서 현장에서 볼 수 있으며, KB-IED Manager를 통해 서 현장 또는 원방에서 확인할 수 있습니다.

LCD 창을 통해 표시되는 Event Data는 단축 용어로 표시되며 단축 용어의 원문 및 상세 내용은 다음과 같습니다.

EVENT 표시 항목		설 명
Sustan Dagat	Power ON	계전기 제어전원 Power ON
System Reset	Power OFF	계전기 제어전원 Power OFF
	DC Power	DC Power Error 발생
System Eerror	CPU WatchDog	CPU except Error 발생
	Memory	Memory Error 발생
	Setting	Setting Error 발생
	AD Converter	A/D Converter Error 발생
	DO/I Circuit	DO/I Circuit Error 발생
	DI1 Low to High Chg	
DI Changa	DI1 High to Low Chg	
DI Change	DI1 Low to High Chg	
	DI1 High to Low Chg	
	Local - OPEN	현장에서 차단기 개방
	Remote - OPEN	원방에서 차단기 개방
CR Control	Local - CLOSE	현장에서 차단기 투입
	Remote - CLOSE	원방에서 차단기 투입
	Local Mode	차단기 제어권 Local 변경
	Remote Mode	차단기 제어권 Remote 변경
	OPEN	차단기 개방으로 상태 변경
CB Status	CLOSE	차단기 투입으로 상태 변경
	Trouble	차단기 상태입력에 문제 발생
	TOCR (A,B,C)	한시 과전류 A,B,C상 Pickup/동작/복귀
	IOCR (A,B,C)	순시 과전류 A,B,C상 Pickup/동작/복귀
	TOCGR	한시 지락과전류 Pickup/동작/복귀
PROT	IOCGR	순시 지락과전류 Pickup/동작/복귀
Pickup/	SGR	선택 지락과전류 Pickup/동작/복귀
Prot Operation/	OVR (A,B,C)	과전압 A,B,C상 Pickup/동작/복귀
Release	UVR (A,B,C)	저전압 A,B,C상 Pickup/동작/복귀
	TOVGR	한시 지락과전압 Pickup/동작/복귀
	IOVGR	순시 지락과전압 Pickup/동작/복귀
	NSOVR	역상 과전압 Pickup/동작/복귀

TOCR		TOCR 설정 변경
	IOCR	IOCR 설정 변경
	TOCGR	TOCGR, TDOCGR 설정 변경
	IOCGR	IOCGR, IDOCGR 설정 변경
	SGR	SGR 설정 변경
	OVR	OVR 설정 변경
	UVR	UVR 설정 변경
	TOVGR	TOVGR 설정 변경
	IOVGR	IOVGR 설정 변경
	NSOVR	NSOVR 설정 변경
	FREQUENCY	주파수 설정 변경
Sotting Change	PT CON	PT CONNECTION 설정 변경
Setting Change	Phase PT Sec	Phase PT 2차 정격 설정 변경
	Phase PT Ratio	Phase PT Ratio 설정 변경
	Ground PT Sec	Ground PT 2차 정격 설정 변경
	Ground PT Ratio	Ground PT Ratio 설정 변경
	Phase CT Ratio	Phase CT Ratio 설정 변경
	Ground CT Ratio	Ground CT Ratio 설정 변경
	CB Control	차단기 제어 설정 변경
	T/S Output	T/S Output 설정 변경
	Waveform Record	Waveform 설정 변경
	Communication	통신 설정 변경
	PASSWORD	PASSWORD 설정 변경
	System Time	SYSTEM TIME 설정 변경
Annunciator	ProtOP	Protection annunciator reset
Reset SYSTEM ERROR		System Error annunciator reset
Clear Event		Event 기록 삭제
Clear Waveform		고장파형 기록 삭제
Clear Energy		전력량 기록 삭제
CB OPEN CNT Change		차단기 개방 횟수 변경
Waveform Capture		고장 파형기록 Capture
Event ID Error.		Event ID Error 발생

3.4.3.2 RECORD ► WAVEFORM

<u>DISPLAY/RECORD/WAVEFORM</u>에서는 K-PAM F300의 메모리에 저장된 모든 고장파형기록 Data 수, Trigger 시각 및 내용이 표시됩니다.

고장파형기록 내용에는 Trigger Source 및 간단한 설명이 포함되어 있는데 사고 파형기록은 최대 6개의 Block까지 기록 가능합니다.

분해능은 주기 당 32Sample이고 Block 당 최대기록시간은 2.8초이며 고장파형기 록은 제어전원이 상실되어도 영구적으로 보존됩니다.

파형기록에는 전류/전압, 접점입출력 상태, 보호요소 동작상태의 샘플데이터가 포함되며 KB-IED Manager를 통해서 현장 또는 원방에서 Upload하여 확인할 수 있습니다.

고장파형기록은 COMTRADE File Format으로 기록되어 있어서 고장분석 및 보호 계전기 시험기를 통해 고장 재현을 할 수 있습니다.

3.4.3.3 RECORD ► CB OPEN CNT

<u>**DISPLAY/RECORD/CB OPNE CNT</u>에서는 K-PAM F300의 메모리에 저장된 CB OPEN Counter를 표시됩니다.**</u>

3.4.4 계전기 Version 표시 (SYS INFO)

<u>DISPLAY/SYS INFO</u>에서는 계전기의 DSP의 Version 정보를 확인할 수 있습니 다.

DSP의 Version 정보는 계전기 Update 시 기준이 되므로 Version 정보를 확인해 두시기 바랍니다.
4. 계전기 정정관련설명 (Setting Description)

K-PAM F300의 <u>SETTING</u> 메뉴는 계전기의 기능 수행에 필요한 설정값을 표시 /변경, 기록을 Clear, TEST 화면입니다.

현재 설정된 값은 전면 Key 조작으로 확인가능하나 설정값을 변경하고자 할 경우에는 Password 확인절차를 거쳐야 합니다.

- 전면 표시조작부에 의한 설정
- (1) 설정값을 변경하려면 세부메뉴에서 UP(●), DOWN(♥) Key로 변경항목을 선택한 후 RIGHT(●) Key를 누릅니다.
- (2) Password를 물을 경우 LEFT(, RIGHT(), RIGHT(), Key를 이용하여 각 자리별로 이동하면서 UP(), DOWN(), Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다. (Password 초기값은 "0000"입니다.)
- (3) 올바른 Password를 입력한 후, RIGHT() Key를 누르면 설정값 부분이 점멸합니다. 만약 잘못된 Password를 입력하였을 경우 재차 Password를 묻습니다.
- (4) UP(●), DOWN(●) Key를 눌러 설정하고자 하는 값을 선택한 후 ENT
 (ENTER) Key를 누릅니다.
- (5) 만약 **ENT**(ENTER) Key를 누르기 전에 LEFT() Key를 누르면 이전 설정값으로 돌아갑니다.
- (6) LEFT() Key를 이용하여 초기화면으로 돌아갈 경우, 설정 저장여부를 묻는데 UP(), DOWN() Key를 이용하여 "YES"를 선택한 후 ENT (ENTER) Key를 누르면 변경된 설정값으로 저장을 합니다.
- (7) 만약 "NO"를 선택했을 경우 설정된 값은 취소됩니다. 여러 항목을 동시에 변경할 경우 SETTING MODE 블록을 벗어나지 않으면 Password를 재차 입력할 것을 요구하지 않습니다.
- (8) KB-IED Manager를 이용하면 편리하게 일괄 정정이 가능합니다.

4.1 PROTECTION

K-PAM F300의 보호요소 설정은 <u>SETTING/PROTECTION</u>를 통해서 이루어집 니다.

계전기의 보호요소는 단락/지락 과전류보호(50/51, 50N/51N), 방향성 지락과전류 (67N), 선택지락 과전류요소(67G), 과전압보호(59), 저전압보호(27), 지락과전압보 호(64(59G)), 역상과전압보호(47)이 있습니다.

■ 기능선택(FUNCTION)

모든 보호요소에는 기능선택(FUNCTION)설정항목이 공통적으로 있어 보호기능을 수행하게 할 수 있습니다.

기능선택(FUNCTION)을 비사용(DISABLED)으로 설정하면 해당 보호기능은 동작 하지 않습니다.

4.1.1 과전류 보호 (OCR : 50/51)

순시/정한시 단락과전류보호(50), 한시 단락과전류보호(51)로 구성됩니다. 순시/정한시 요소의 최소동작시간은 40msec 이하(정정치의 2배 입력 시)이고, 반한시 요소 특성커브는 IEC 4종, KEPCO 4종으로 이루어집니다. 반한시 특성은 전류와 시간의 함수로 전류의 크기가 클수록 동작시간은 짧아지 며, KEPCO 4종의 특성커브는 유도형 계전기와 동일하게 구현되어 있어 유도형 계전기 대체 사용 시 동일한 정정값으로 정정할 수 있어 편리합니다. 반한시 동작시간 특성에서 계전기에 정정치보다 2000% 이상의 전류가 흐르면 2000% 입력 동작시간과 동일한 시간으로 동작합니다. 과전류보호의 검출 전류는 입력되는 CT 2차측 전류를 사용합니다.

반한시 특성의 시간과 전류 관계식은 다음과 같습니다.

$$T = \left(\frac{K_{\Gamma}}{(\frac{I_{\Gamma}}{I_{S_{\Gamma}}})^{L_{\Gamma}} \mathbf{1}_{\Gamma}} + C \right) \times \frac{M_{\Gamma}}{10_{\Gamma}} (s e c)_{\Gamma}$$

여기서 T:동작시간, K와 C:계전기 특성값, I:계전기 입력 전류,

 I_s :계전기 동작 정정치, L:특성 곡선지수, M:동작 시간 배율(Time Multiplier)

CURVE	표시 기호	K	L	С
IEC Normal Inverse	NI	0.14	0.02	0.00
IEC Very Inverse	VI	13.50	1.00	0.00
IEC Extremely Inverse	EI	80.00	2.00	0.00
IEC Long Inverse	LI	120.00	`1.00	0.00
KEPCO Normal Inverse	KNI	0.11	0.02	0.42
KEPCO Very Inverse	KVI	39.85	1.95	1.08
KEPCO Long Normal Inve7rse	KLNI	3.8	0.11	2.8
KEPCO Long Very Inverse	KLVI	75	1.8	2

계전기 정정 시 반한시 특성곡선을 선택하면 위의 표에 표시되는 K, L, C 값이 정해집니다.

특성 커브에 대한 자세한 내용은 <u>부도1. 특성 곡선</u>을 참조하시기 바랍니다.

< 그림 6. 순시/정한시 과전류보호 동작특성 >

< 그림 7. 한시 과전류보호 동작특성 >

설정 항목	범위(STEP)	단 위	설 명
1. FUNCTION	ENABLE, DISABLE		기능사용 여부
2. CURVE	DT, INST		정한시, 순시 설정
3. PICKUP	0.1 ~ 100.0 (0.5)	A	Pickup 전류 설정
4. DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정

<표 1. IOCR(50) 설정 메뉴>

	설정 항목	범위(STEP)	단 위	설 명
1.]	FUNCTION	ENABLE, DISABLE		기능사용 여부
2. 0	CURVE	NI, , KLVI, DT		반한시 특성커브 설정 NI : IEC Normal Inverse VI : IEC Very Inverse EI : IEC Extremely Inverse LI : IEC Long Inverse KNI : KEPCO Normal Inverse KVI : KEPCO Very Inverse KLNI : KEPCO Long Normal Inverse KLVI : KEPCO Long Very Inverse DT : Definite Time
3. PICKUP 0.2 ~ 16.0 (0.1)		A	Pickup 전류 설정	
	TIME DIAL 0.05 ~ 10.00 (0.05)			Time Multiplier 설정
4.	DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정

<표 2. TOCR(51) 설정 메뉴>

4.1.2 지락과전류, 방향성 지락과전류 보호(OCGR : 50/51N, DOCGR : 67N)

순시/정한시 지락과전류보호(50N), 한시 지락과전류보호(51N), 방향성 지락과전 류보호(67N)로 구성됩니다.

순시/정한시 요소의 최소동작시간은 40msec 이하(정정치의 2배 입력 시)이고, 반한시 요소 특성커브는 IEC 4종, KEPCO 4종으로 이루어집니다.

반한시 특성은 전류와 시간의 함수로 전류의 크기가 클수록 동작시간은 짧아지 며, KEPCO 4종의 특성커브는 유도형 계전기와 동일하게 구현되어 있어 유도형 계전기 대체 사용 시 동일한 정정값으로 정정할 수 있어 편리합니다. 반한시 동작시간 특성에서 계전기에 정정치보다 2000% 이상의 전류가 흐르면 2000% 입력 동작시간과 동일한 시간으로 동작합니다.

지락방향 검출요소는 접지계통에서 정상상태 또는 고장상태에서 전류흐름의 방 향을 판별하는데 적용합니다.

지락방향 검출요소(67N)는 전압위상(VN), 지락전류(IN)의 크기와 위상을 비교하

여 방향을 판별합니다.

지락과전류와 방향성 지락과전류요소는 방향성 설정(DIR)이 있어 DIR을 "DISABLE"로 설정하면 지락과전류로 동작하고 "ENABLE"로 설정 시 방향성 지락 과전류로 동작합니다.

지락 과전류보호요소의 입력전류는 지락보호용 CT나 3상 CT의 잔류회로결선 (Residual Connection)으로부터 얻을 수 있습니다. 방향성 지락과전류에 사용되는 전압은 GPT 3차측에 유기되는 전압으로부터 입력 받습니다.

반한시 특성의 시간과 전류 관계식은 다음과 같습니다.

$$T = \left(\frac{K_{\Gamma}}{(\frac{I_{\Gamma}}{I_{S_{\ell}}})^{L_{\Gamma}} \mathbf{1}_{\Gamma}} + C \right) \times \frac{M_{\Gamma}}{10_{\Gamma}} (s e c)_{\Gamma}$$

여기서 T:동작시간, K와 C:계전기 특성값, I:계전기 입력 전류,

 I_s :계전기 동작 정정치, L:특성 곡선지수, M:동작 시간 배율(Time Multiplier)

CURVE	표시 기호	K	L	С
IEC Normal Inverse	NI	0.14	0.02	0.00
IEC Very Inverse	VI	13.50	1.00	0.00
IEC Extremely Inverse	EI	80.00	2.00	0.00
IEC Long Inverse	LI	120.00	`1.00	0.00
KEPCO Normal Inverse	KNI	0.11	0.02	0.42
KEPCO Very Inverse	KVI	39.85	1.95	1.08
KEPCO Long Normal Inve7rse	KLNI	3.8	0.11	2.8
KEPCO Long Very Inverse	KLVI	75	1.8	2

계전기 정정 시 반한시 특성곡선을 선택하면 위의 표에 표시되는 K, L, C 값이 정해집니다.

특성 커브에 대한 자세한 내용은 <u>부도1. 특성 곡선</u>을 참조하시기 바랍니다.

< 그림 8. 지락방향 검출 방향 특성>

< 그림 9. (방향성) 순시/정한시 지락과전류보호 동작특성 >

< 그림 10. (방향성) 한시 지락과전류보호 동작특성 >

설정 항목	범위(STEP)	단위	설명
1. FUNCTION	ENABLE, DISABLE		기능사용 여부
2. CURVE	DT, INST		정한시, 순시 설정
3. DIR	DISABLE, FORWARD, REVERSE		DISABLE : 지락과전류 FORWARD : 정방향 방향성 지락과전류 REVERSE : 역방향 방향성 지락과전류
4. IN PICKUP	0.5 ~ 50.0 (0.1)	А	Pickup 전류 설정
5. VN PICKUP	5 ~ 170V (1)	V	Pickup 전압 설정
6. DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정
7. MTA	-90 ~ 90 (1)	0	최대 토크각 설정

< 표 3. IOCGR(50N), IDOCGR(67N) 설정 메뉴 >

설정 항목	범위(STEP)	단위	설명		
1. FUNCTION	ENABLE, DISABLE		기능사용 여부		
2. CURVE	NI, , KLVI, DT		반한시 특성커브 설정 NI : IEC Normal Inverse VI : IEC Very Inverse EI : IEC Extremely Inverse LI : IEC Long Inverse KNI : KEPCO Normal Inverse KVI : KEPCO Very Inverse KLNI : KEPCO Long Normal Inverse KLVI : KEPCO Long Very Inverse DT : Definite Time		
3. DIR	DISABLE, FORWARD, REVERSE		DISABLE : 지락과전류 FORWARD : 정방향 방향성 지락과전류 REVERSE : 역방향 방향성 지락과전류		
4. IN PICKUP	0.1 ~ 10.0 (0.1)	A	Pickup 전류 설정		
5. VN PICKUP	5 ~ 170V (1)	V	Pickup 전압 설정		
6. TIME DIAL	$0.05 \sim 10.00 \ (0.05)$		Time Multiplier 설정		
7. DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정		
8. MTA	-90 ~ 90 (1)	0	최대 토크각 설정		

< 표 4. TOCGR(51N), TDOCGR(67N) 설정 메뉴 >

4.1.3 선택지락 과전류보호 (SGR : 67G)

선택지락 과전류보호요소는 비접지 계통의 지락고장 검출용으로 사용되고, 영상전압과 영상전류의 크기/위상에 의해서 동작하는 방향성 보호요소입니다. 비접지 계통에서는 대지와 선로사이에 전류회로가 선로의 누설 커패시턴스 성분 을 통해 형성되므로 그 고장전류는 매우 작습니다.

작은 고장전류를 검출하는 데는 저전류 영역의 영상전류에 대해 감도가 좋은 ZCT를 사용하며, 사고방향이 자기보호구간인지 아닌지를 판정하기 위해 영상전 압요소를 동시에 이용합니다.

K-PAM F300은 방향설정에서 정방향 방향성 "FORWARD", 역방향 방향성 "REVERSE", 무방향 "DISABLED"으로 되어 있어 무방향 "DISABLED" 설정 시 영상전압의 크기와 위상에 상관없이 영상전류의 크기로 동작합니다.

반한시 특성은 전류와 시간의 함수로 전류의 크기가 클수록 동작시간은 짧아지 며, 반한시 특성커브는 유도형 계전기와 동일하게 구현되어 있어 유도형 계전기 대체 사용 시 동일한 정정값으로 정정할 수 있어 편리합니다.

반한시 동작시간 특성에서 계전기에 정정치보다 2000% 이상의 전류가 흐르면 2000% 입력 동작시간과 동일한 시간으로 동작합니다.

< 그림 11. 선택지락 과전류보호 동작각 특성 >

선택지락 과전류보호요소의 방향별 동작 위상은 다음과 같습니다. <u>동작영역 : cosine (∠-3V0(VG) + MTA - ∠Is) ≥ 0</u> <u>비동작영역 : cosine (∠-3V0(VG) + MTA - ∠Is) < 0</u>

≪☞ 경보전기[주]

< 그림 12. 선택지락 과전류보호 동작특성 >

	설정 항목	범위(STEP)	단위	설 명
1. FUNCTION ENA		ENABLE, DISABLE		기능사용 여부
2. CURVE DT, NI			정한시, 반한시 설정	
3. DIR F		DISABLE, FORWARD, REVERSE		DISABLE : 지락과전류 FORWARD : 정방향 방향성 지락과전류 REVERSE : 역방향 방향성 지락과전류
4.	IS PIKCUP	0.9 ~ 250 (0.1)	mA	Pickup 전류
5	TIME DIAL	0.05 ~ 10.00 (0.05)		Time Multiplier 설정
5.	DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정
6.	VN PICKUP	5 ~ 170 (1)	V	Pickup 전압
7.	МТА	-90 ~ 90 (1)	0	최대 토크각 설정

< 표 5. SGR(67G) 설정 메뉴 >

4.1.4 과전압보호 (OVR : 59)

과전압 보호요소는 정한시/반한시 요소로 동작하는 3상 보호요소입니다. 과전압 보호요소의 반한시 특성은 전압과 시간의 함수로 전압의 크기가 클수록 동작시간은 짧아지며, 동작특성이 유도형 계전기와 동일하게 구현되어 있어 유도 형 계전기 대체 사용 시 동일한 정정을 할 수 있어 편리합니다. 반한시 동작시간 특성에서 계전기에 정정치보다 250% 이상의 전압이 흐르면 250% 입력 동작시간과 동일한 시간으로 동작합니다. 특성커브에 대한 자세한 내용은 <u>부도1. 특성 곡선</u>을 참조하시기 바랍니다.

< 그림 13. 과전압보호 동작특성 >

	설정 항목	범위(STEP)	단 위	설 명
1. F	FUNCTION	ENABLE, DISABLE		기능사용 여부
2. (CURVE	DT, NI		정한시, 반한시 설정
3. I	PICKUP	5 ~ 170 (1)	V	전압 Pickup 설정
4	TIME DIAL	0.05 ~ 10.00 (0.05)		Time Multiplier 설정
4.	DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정

< 표 6. OVR(59) 설정 메뉴 >

4.1.5 저전압보호 (UVR : 27)

정한시/역반한시 요소로 동작하는 구성된 3상 저전압 보호요소입니다. 저전압 보호요소의 역반한시 특성은 전압과 시간의 함수로 전압의 크기가 작을 수록 동작시간은 짧아지며, 동작특성이 유도형 계전기와 동일하게 구현되어 있어 유도형 계전기 대체 사용 시 동일한 정정을 할 수 있어 편리합니다.

특성커브에 대한 자세한 내용은 <u>부도1. 특성 곡선</u>을 참조하시기 바랍니다.

<그림 14. 저전압보호 동작특성>

	설정 항목	범위(STEP)	단 위	설 명
1. I	FUNCTION	ENABLE, DISABLE		기능사용 여부
2. (CURVE	DT, NI		정한시, 역반한시 설정
3. 1	PICKUP	5 ~ 170 (1)	V	전압 Pickup 설정
4	TIME DIAL	$0.05 \sim 10.00 \ (0.05)$		Time Multiplier 설정
4.	DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정

< 표 7. UVR(27) 설정 메뉴 >

4.1.6 지락 과전압보호 (OVGR : 64(59G))

지락 과전압 보호요소는 순시/정한시 요소로 동작하는 IOVGR과 정한시/반한시 요소로 동작하는 TOVGR로 구성된 단상 보호요소입니다.

지락 과전압 보호요소는 계통에 지락고장 시 발생되는 영상전압을 검출하여 지 락 고장을 보호할 수 있습니다.

지락고장 시 발생되는 영상전압을 GPT(Ground PT)를 통해 입력받을 수도 있고, PT의 상전압을 입력받아 지락고장 시 발생되는 영상전압을 계전기 내부 연산을 통해 인식할 수도 있습니다.

지락 과전압 보호요소의 반한시 특성은 전압과 시간의 함수로 전압의 크기가 클수록 동작시간은 짧아지며, 동작특성이 유도형 계전기와 동일하게 구현되어 있어 유도형 계전기 대체 사용 시 동일한 정정을 할 수 있어 편리합니다.

반한시 동작시간 특성에서 계전기에 정정치보다 1000% 이상의 전압이 흐르면 1000% 입력 동작시간과 동일한 시간으로 동작합니다.

순시/정한시 요소의 최소동작시간은 40msec 이하(정정치 1.5배 입력 시)입니다

특성커브에 대한 자세한 내용은 부도1. 특성 곡선을 참조하시기 바랍니다.

< 그림 16. 한시 지락 과전압보호 동작특성 >

설정 항목	범위(STEP)	단 위	설 명
1. FUNCTION	ENABLE, DISABLE		기능사용 여부
2. CURVE	DT, INST		정한시, 순시 설정
3. PICKUP	10 ~ 170 (1)	V	전압 Pickup 설정
4. DT TIME	0.04 ~ 60.00 (0.01)	sec	동작시간 지연 설정

< 표 8. IOVGR (64(59G)) 설정 메뉴 >

	설정 항목	범위(STEP)	단 위	설 명
1.	FUNCTION	ENABLE, DISABLE		기능사용 여부
		DT,		DT : 정한시
2.	CURVE	INV_TRIP,		INV_TRIP : Trip용 반한시
		INV_ALARM		INV_ALARM : Alarm용 반한시
3.	PICKUP	5 ~ 170 (1)	V	전압 Pickup 설정
4	TIME DIAL	0.05 ~ 10.00 (0.05)		Time Multiplier 설정
4.	DT TIME	0.04 ~ 60.00 (0.01)	sec	정한시 동작시간 설정

< 표 9. TOVGR (64(59G)) 설정 메뉴 >

4.1.7 역상 과전압보호 (NSOVR : 47)

역상과전압보호요소는 역상전압의 크기에 의해 동작하는 정한시 보호요소로써 역상 과전압보호에 사용되는 역상분 전압(V2)는,

<그림 17. 역상 과전압보호 동작특성>

설정 항목	범위(STEP)	단 위	설 명
1. FUNCTION	ENABLE, DISABLE		기능사용 여부
2. PICKUP	5 ~ 170 (1)	V	역상분 전압 Pickup 설정
3. DT TIME	0.04 ~ 60.00 (0.01)	sec	동작시간 지연 설정

<표 10. NSOVR (47) 설정 메뉴>

4.2 SYSTEM

K-PAM F300의 SYSTEM정정항목은 Power System, 차단기(Breaker), T/S Output, System Time, 고장파형기록(Waveform), 통신(Communication), Password가 있습니 다.

4.2.1 POWER SYSTEM

<u>SETTING/SYSTEM/POWER SYSTEM</u>에는 아날로그 회로구성 설정을 위한 POWER SYSTEM이 있습니다.

4.2.1.1 POWER SYSTEM ▶ FREQUENCY(정격주파수)

정격주파수는 K-PAM F300의 계측 및 보호연산에 이용되는 중요한 요소이므로 계통의 주파수에 맞게 설정해야 합니다. 설정된 주파수와 계통주파수가 다를 경우 계측값이 심하게 흔들리거나 보호요소 의 동작특성에 오차를 유발합니다. 정격주파수는 계전기의 Key Pad나 KB-IED Manager를 통해서 설정 가능합니다.

4.2.1.2 POWER SYSTEM ▶ PT CONNECT(PT 결선)

PT 결선은 K-PAM F300의 계측 및 보호연산에 이용되는 중요한 요소이므로 계통에 맞게 설정해야 합니다.

설정된 결선 방식과 현장의 결선이 다를 경우, 계측값이 다르게 나오고 보호요소 의 오동작을 유발합니다.

PT 결선이 "NONE"일 경우 상전압 및 선간전압 계측은 "0 V"로 표시되고, PT 결선이 "DEL"일 경우 상전압 계측은 "0 V"로 표시하고 3상 전압이 입력되지 않을 경우 3상 전력도 "0"으로 표시합니다.

결선은 계전기의 Key Pad나 KB-IED Manager를 통해서 설정 가능합니다.

4.2.1.3 POWER SYSTEM ► PT Ratio(PT 出)

K-PAM F300은 4개의 전압입력이 있습니다. 이들 전압은 전압을 이용하는 모 든 보호요소의 전압입력입니다.

상/지락 전압 비율 설정은 계전기 Key Pad나 KB-IED Manager를 통해서 설정 가능합니다.

▶ 계측표시화면 상/선간 전압값 = Phase PT RATIO×입력전압(V)

▶ 계측표시화면 지락 전압값 = Ground PT RATIO×입력전압(V)

4.2.1.4 POWER SYSTEM ▶ PT SEC (PT 정격)

계전기에 입력되는 상전압이나 영상전압의 PT 2차 정격을 설정하는 항목으로 보호요소에는 영향을 미치지 않고 단지 파형기록에서 입력 PT의 2차 정격에 대 한 정격만 줍니다.

상/지락 전압 정격 설정은 계전기 Key Pad나 KB-IED Manager를 통해서 설정 가능합니다.

4.2.1.5 POWER SYSTEM ► CT Ratio(CT \U00dfl)

K-PAM F300은 4개의 전류입력이 있습니다. 이들 전류는 전류를 이용하는 모 든 보호요소의 전류소스입니다.

상/지락 전류 비율 설정은 계전기 Key Pad나 KB-IED Manager를 통해서 설정 가능합니다.

▶ 계측표시화면 상 전류값 = Phase CT RATIO×입력전류(A)

▶ 계측표시화면 지락 전류값 = Ground CT RATIO×입력전류(A)

설정 항목	범위(STEP)	단 위	설 명
1. FREQUENCY	60Hz, 50Hz		정격 주파수 설정
2. PT CONNECT	NONE, WYE, DELTA		PT 결선 설정
3. Phase PT SEC	50.0 ~ 240.0 (0.1)	V	Phase PT 2차 정격 설정
4. Phase PT RATIO	0.1 ~ 6500.0 (0.1)		Phase PT Ratio 설정
5. Ground PT SEC	50.0 ~ 240.0 (0.1)	V	Ground PT 2차 정격 설정
6. Ground PT RATIO	0.1 ~ 6500.0 (0.1)		Ground PT Ratio 설정
7. Phase CT RATIO	5 ~ 3000 : 5		Phase CT Ratio 설정
8. Ground CT RATIO	5 ~ 3000 : 5		Ground CT Ratio 설정

< 표 11. POWER SYSTEM 설정 메뉴 >

4.2.2 CB CONTROL

<u>SETTING/SYSTEM/CB Control</u>에서는 차단기의 제어에 필요한 설정을 각각 할 수 있습니다.

차단기 상태는 52a과 52b 접점입력으로 받고 2개의 접점입력 상태에 따라서 차 단기의 상태를 표시합니다. 2개의 접점의 상태가 같으면 차단기의 차단기에 문제 가 있는 것으로 판단하여 차단기를 제어할 수 없습니다.

차단기의 상태가 비정상적으로 표시될 경우 연결 상태를 확인하시기 바랍니다.

설정 항목	범위(STEP)	단 위	설 명
1. FUNCTION	ENABLE, DISABLE		차단기 사용여부
			차단기 현장제어 허용 여부
2. KEY UIKL	ENABLE, DISABLE		DISABLED : 연장에서 사단기 제어 보기
			제이 길기
3. OPEN TIME	$0.1 \sim 5.0 (0.1)$	sec	차단기 OPEN 제어출력 시간
4. CLOSE TIME	0.1 ~ 5.0 (0.1)	sec	차단기 CLOSE 제어출력 시간
5. CB INPUT	52a+52b, 52a, 52b		입력 방법 선택

< 표 12. CB CONTROL 설정 메뉴 >

4.2.3 T/S OUTPUT

<u>SETTING/SYSTEM/T/S OUTPUT</u> 은 총 10개의 출력접점의 제어에 필요한 설정을 각각 할 수 있습니다. 접점 출력 조건과 출력 접점의 복귀방법, 출력 접점의 복귀시간을 설정합니다.

4.2.3.1 T/S OUTPUT ► CONNECTION

출력 접점을 어떤 조건에서 동작 시킬 것인가를 설정하는 항목입니다. 설정을 비사용(DISABLE)으로 되면 해당 출력접점은 사용되지 않습니다. 출력 접점 조건 중에 "SYS_ERR"은 계전기에 이상이 발생했을 때 동작하는 조건 으로 계전기에 이상이 없을 경우 본래의 접점에서 반대의 접점으로 변합니다. 즉, a접점에 "SYS_ERR"을 설정할 경우 정상 상태일 때 b접점으로 되어 있다가 계전기에 이상이 발생하면 a접점으로 변합니다.

4.2.3.2 T/S OUTPUT ▶ RESET 설정

출력접점의 복귀 방식을 설정하는 항목으로 "Self" Mode와 "Manual" Mode가 있습니다.

"Self" Mode는 계전 요소가 복귀할 때 출력 접점도 자동으로 복귀되는 방식이며, "Manual" Mode는 계전 요소가 복귀되어도 출력 접점은 자동으로 복귀하지 않고 "RESET" Key를 눌러야만 복귀되는 기능으로 "RESET" Key를 누르기 전까지는 출력 접점을 유지시키고 있습니다.

4.2.3.3 T/S OUTPUT ▶ DELAY 설정

출력접점의 복귀 지연 시간을 설정하는 항목으로 "Self" Mode일 경우만 해당이 되고 "Manual" Mode는 해당되지 않습니다.

설정 항목	범위(STEP)	설 명
	OFF	비사용
	CB_OPEN	차단기 개방 제어
	CB_CLOSE	차단기 투입 제어
	ALL_PROT	모든 보호요소 동작 OR
	OCR	과전류 보호 동작 OR
	ТОС	한시 과전류 보호 동작 OR
	ЮС	순시 과전류 보호 동작 OR
1 Composition	OC_A	과전류 A상 동작
1. Connection	OC_B	과전류 B상 동작
	OC_C	과전류 C상 동작
	TOC_A	한시 과전류 A상 동작
	TOC_B	한시 과전류 B상 동작
	TOC_C	한시 과전류 C상 동작
	IOC_A	순시 과전류 A상 동작
	IOC_B	순시 과전류 B상 동작
	IOC_C	순시 과전류 C상 동작

설정 항목	범위(STEP)	설 명		
	OCGR	지락 과전류 보호동작 OR		
	TOCG	한시 지락 과전류 보호 동작		
	IOCG	순시 지락 과전류 보호 동작		
	SGR	선택 지락 과전류 보호 동작		
	OVR	과전압 보호 동작 OR		
	OV_A	과전압 A상 동작		
	OV_B	과전압 B상 동작		
	OV_C	과전압 C상 동작		
	UVR	저전압 보호 동작 OR		
	UV_A	저전압 A상 동작		
	UV_B	저전압 B상 동작		
	UV_C	저전압 C상 동작		
	OVGR	지락 과전압 보호 동작 OR		
	TOVG	한시 지락 과전압 보호 동작		
1 Connection	IOVG	순시 지락 과전압 보호 동작		
1. Connection	NSOVR	역상 과전압 보호 동작		
	OC+OCG	과전류 + 지락 과전류 보호 동작		
	TOC+TOCG	한시 과전류 + 한시 지락 과전류 보호 동작		
	IOC+IOCG	순시 과전류 + 순시 지락 과전류 보호 동작		
	OC+SG	과전류 + 선택 지락 과전류 보호 동작		
	OC+OV	과전류 + 과전압 보호 동작		
	OC+UV	과전류 + 저전압 보호 동작		
	OC+OVG	과전류 + 지락 과전압 보호 동작		
	OC+NSOV	과전류 + 역상 과전압 보호 동작		
	OCG+SG	지락 과전류 + 선택 지락 과전류 보호 동작		
	OCG+OV	지락 과전류 + 과전압 보호 동작		
	OCG+UV	지락 과전류 + 저전압 보호 동작		
	OCG+OVG	지락 과전류 + 지락 과전압 보호 동작		
	OCG+NSOV	지락 과전류 + 역상 과전압 보호 동작		
	SG+OV	선택 지락 과전류 + 과전압 보호 동작		

설정 항목	범위(STEP)	설 명
1. Connection	SG+UV	선택 지락 과전류 + 저전압 보호 동작
	SG+OVG	선택 지락 과전류 + 지락 과전압 보호 동작
	SG+NSOV	선택 지락 과전류 + 역상 과전압 보호 동작
	OV+UV	과전압 + 저전압 보호 동작
	OV+OVG	과전압 + 지락 과전압 보호 동작
	OV+NSOV	과전압 + 역상 과전압 보호 동작
	UV+OVG	저전압 + 지락 과전압 보호 동작
	UV+NSOV	저전압 + 역상 과전압 보호 동작
	OVG+NSOV	지락 과전압 + 역상 과전압 보호 동작
) DESET	SYS_ERR	자기 진단 동작
2. KEJE I	SELF, MANUAL	접점 복귀 방식 설정
3. DELAY	$0.0 \sim 200.0 \ (0.01)$ sec	복귀 지연 시간

< 표 13. T/S OUTPUT 설정 메뉴 >

4.2.4 SYSTEM TIME

<u>SETTING/SYSTEM/SYSTEM TIME</u>는 보호 계전기 내부에 설치된 시간을 변경 하는데 사용됩니다. 설정 순서는 년/월/일/시:분:초 입니다.

RTC 시간을 변경할 때에는 RTC 메뉴로 들어와서 RIGHT() Key LEFT() Key로 각 항목을 선택하고 UP(), DOWN() Key로 값을 모두 변경한 다음 ENT(ENTER) Key를 누르시면 변경된 시간으로 설정이 됩니다.

설정 항목	범위(STEP)	설 명
YYYY	2000 ~ 2100 (1)	년 설정
ММ	01 ~ 12 (1)	월 설정
DD	01 ~ 31 (1)	일 설정
нн	00 ~ 23 (1)	시 설정
ММ	00 ~ 59 (1)	분 설정
SS	00 ~ 59 (1)	초 설정

<표 14. RTC 설정 메뉴>

4.2.5 WAVEFORM RECORD

SETTING/SYSTEM/WAVEFORMRECORD고장파형을기록할수있도록설정하는데사용됩니다.파형기록은 최대6개의블록까지기록가능합니다.

분해능은 주기 당 32Sample이고 Block 당 최대 기록시간은 2.8초입니다.

파형기록에는 전류/전압, 접점입출력 상태, 보호요소 동작상태의 Sample Data가 포함됩니다.

파형기록의 Trigger 조건은 보호 요소의 PICKUP, 동작, PICKUP+동작으로 가능하며, 파형기록의 Trigger 위치도 전체 Block 사이즈의 0 ~ 99%까지 설정 가능합니다.

In/Is 설정항목이 있어 고장 기록 시 "In"으로 설정 시 고장 기록 데이터를 In전류 로 기록하고 "Is"로 설정 시 ZCT 2차 전류로 기록합니다.

파형기록은 KB-IED Manager를 통해서 현장 또는 원방에서 Upload 가능하며, 계 전기의 제어전원이 상실되어도 Data는 유지되며, 파형기록은 COMTRADE File Format으로 기록되어 있어서 고장분석 및 보호계전기 시험기를 통한 고장 재현에 사용할 수 있습니다.

설정 항목	범위(STEP)	단 위	설 명
1. TRIGGER POS	0 ~ 99% (1)	Cycle	Trigger 위치 설정 40% : Trigger 전 파형(40%)+ Trigger 후 파형(60%)
2. TRIGGER SRC	OP, PKP, OP+PKP		Trigger 소스 설정
3. In / Is	In, Is		고장 데이터 설정

< 표 15. WAVEFORM RECORD 설정 메뉴 >

4.2.6 COMMUNICATION

<u>SETTING/SYSTEM/COMMUNICATION</u>에서는 계전기 후면에 위치한 RS-485C 통신에 필요한 설정을 할 수 있습니다.

프로토콜은 ModBus 프로토콜이 탑재되어 있습니다.

설정 항목	범위(STEP)	단 위	설 명
1. PROTOCOL	ModBus		적용 통신 프로토콜
2. SLAVE ADDR	1 ~ 254 (1)		Slave 어드레스
3 RDS	300, 1200, 2400, 4800	BDS	Bit / sec
J. D 1 J	9600, 19200	DIS	Dit / sec

< 표 16. COMMUNICATION 설정 메뉴 >

4.2.7 PASSWORD

K-PAM F300에서 사용하는 Password는 셋팅 Password(SET PASS)와 제어 Password(CTRL PASS)가 있습니다.

셋팅 Password(SET PASS)는 설정값 변경 때 사용되고 제어 Password(CTRL PASS)는 Key Pad로 차단기를 제어할 때 사용됩니다.

두 Password는 모두 "0"에서 "9"로 이루어진 4자리 숫자이며 제품 출하 시 초기 값은 모두 "0000"입니다.

Password를 새로 변경하고 잊어버리면 Key 조작으로 설정값을 변경 하거나 제어를 할 수 없습니다.

4.3 RECORD CLEAR 기능 조작

K-PAM F300의 RECORD CLEAR 메뉴에는 계전기의 운영에 필요한 전력량 삭제, Event Data 삭제, 고장파형삭제, 차단기 OPEN CNT 변경 등이 있습니다.

4.3.1 CLEAR EVENT

<u>SETTING/RECORD CLEAR/CLEAR EVENT</u>에서는 계전기에 저장된 Event Data를 Clear 시키는 메뉴입니다.

Clear Event를 수행하면 Event 개수 및 Data가 모두 초기화 됩니다.

- Event Data 삭제 방법
- (1) RECORD CLEAR 메뉴화면에서 CLEAR EVENT를 찾은 후 RIGHT() Key 를 누릅니다.
- (2) Password를 물을 경우 LEFT(, RIGHT(), RIGHT(), Key를 이용하여 각 자리별로 이동하면서 UP(), DOWN() Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다.
- (3) 올바른 Password를 입력한 후, RIGHT(●) Key를 누르면 삭제하고자 하는 내용이 나오고 "NO"라는 문구가 점멸합니다. 이 때 삭제를 원하지 않을 경우 LEFT(●) Key를 눌러서 메뉴를 빠져나오거나 "NO"라는 문구가 점멸 할 때 ENT(ENTER) Key를 누릅니다.
- (4) UP(●), DOWN(●) Key를 이용하여 "YES"라는 문구가 점멸하도록 한 후
 ENT(ENTER) Key를 누릅니다.
- (5) "Event Cleared"라는 문구가 써진 후 CLEAR EVENT 메뉴 화면으로 전환 되면서 Event Data가 Clear 됩니다.

4.3.2 CLEAR WAVEFORM

<u>SETTING/RECORD CLEAR/CLEAR WAVEFORM</u>에서는 계전기에 저장된 고 장파형기록을 Clear 시키는 메뉴입니다.

Clear Waveform를 수행하면 고장파형 개수 및 Data가 모두 초기화 됩니다.

■ 고장파형기록 삭제 방법

- (1) RECORD CLEAR 메뉴화면에서 CLEAR WAVEFORM를 찾은 후 RIGHT
 (●) Key 를 누릅니다.
- (2) Password를 물을 경우 LEFT(
), RIGHT(
) Key를 이용하여 각 자리별로 이동하면서 UP(
), DOWN(
) Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다.
- (3) 올바른 Password를 입력한 후, RIGHT() Key를 누르면 삭제하고자 하는 내용이 나오고 "NO"라는 문구가 점멸합니다. 이 때 삭제를 원하지 않을 경우 LEFT() Key를 눌러서 메뉴를 빠져나오거나 "NO"라는 문구가 점멸 할 때 ENT(ENTER) Key를 누릅니다.
- (4) UP(), DOWN() Key를 이용하여 "YES"라는 문구가 점멸하도록 한 후 **ENT**(ENTER) Key를 누릅니다.
- (5) "Waveform Cleared"라는 문구가 써진 후 CLEAR WAVEFORM 메뉴 화면으로 전환되면서 고장파형기록이 Clear 됩니다.

4.3.3 CLEAR ENERGY

<u>SETTING/RECORD CLEAR/CLEAR ENERGY</u>에서는 계전기에 저장된 전력량 Data를 Clear 시키는 메뉴입니다.

Clear ENERGY를 수행하면 저장된 전력량 Data가 모두 초기화됩니다.

- 전력량 삭제 방법
- (1) RECORD CLEAR 메뉴화면에서 CLEAR ENERGY를 찾은 후 RIGHT
 (●) Key 를 누릅니다.
- (2) Password를 물을 경우 LEFT(
), RIGHT(
) Key를 이용하여 각 자리별로 이동하면서 UP(
), DOWN(
) Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다.
- (3) 올바른 Password를 입력한 후, RIGHT() Key를 누르면 삭제하고자 하는 내용이 나오고 "NO"라는 문구가 점멸합니다. 이 때 삭제를 원하지 않을

경우 LEFT() Key를 눌러서 메뉴를 빠져나오거나 "NO"라는 문구가 점멸 할 때 ENT(ENTER) Key를 누릅니다.

- (4) UP(), DOWN() Key를 이용하여 "YES"라는 문구가 점멸하도록 한 후 ENT(ENTER) Key를 누릅니다.
- (5) "Energy Cleared"라는 문구가 써진 후 CLEAR ENERGY 메뉴화면으로 전환 되면서 전력량 Data가 Clear 됩니다.

4.3.4 SET CB OPEN COUNTER

<u>SETTING/RECORD CLEAR/SET CB OPNE CNT</u>에서는 차단기의 OPEN

Counter를 변경하는 메뉴입니다.

계전기 단독 교체 시 차단기 관리를 위해 교체전의 차단기 동작 회수를 설정해 주어야 합니다.

- CB OPEN COUNTER SET 변경 방법
- (1) RECORD CLEAR 메뉴화면에서 SET CB OPNE CNT을 찾은 후 RIGHT
 (●) Key 를 누릅니다.
- (2) 차단기 OPEN COUNTER 설정화면에서 변경을 원하는 차단기를 UP(_), DOWN(_) Key를 이용하여 선택한 후 RIGHT(_) Key를 누릅니다.
- (3) Password를 물을 경우 LEFT(●), RIGHT(●) Key를 이용하여 각 자리별로 이동하면서 UP(●), DOWN(●) Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다.
- (4) 올바른 Password를 입력한 후, RIGHT(●) Key를 누르면 OPEN COUNTER
 숫자가 점멸합니다.
- (5) UP(), DOWN() Key를 눌러 설정하고자하는 값으로 만든 후 ENT (ENTER) Key를 누르면 설정변경 여부를 묻지 않고 자동으로 저장합니다.
- (6) 설정이 끝난 후 LEFT() Key를 누르면 OPEN COUNTER 설정화면을 벗어납니다.

4.4 TEST 기능 조작

K-PAM F300의 TEST 메뉴에는 계전기의 운영에 필요한 출력접점 Test, 계전기 전면 DISPLAY Test 등이 있습니다.

4.4.1 DISPLAY TEST

<u>SETTING/TEST/DISPLAY TEST</u>에서는 계전기의 전면 Panel에 있는 16개의 LED와 LCD를 Test하는 메뉴입니다. 전면 DISPLAY Test 시 1초 동안 모든 LED가 켜지면서 LCD에 "TEST"이라는 글 씨가 써졌다가 1초 동안 모든 LED, LCD가 꺼지는 시험이 3회 반복됩니다.

- 전면 DISPLAY Test 방법
- (1) TEST 메뉴화면에서 DISPLAY TEST를 찾은 후 RIGHT() Key를 누릅니다.
- (2) Password를 물을 경우 LEFT(
), RIGHT(
) Key를 이용하여 각 자리별로 이동하면서 UP(
), DOWN(
) Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다.
- (3) 올바른 Password를 입력한 후, RIGHT() Key를 누르면 1초 동안 모든 LED가 켜지면서 LCD에 "TEST"이라는 글씨가 써졌다가 1초 동안 모든 LED, LCD가 꺼집니다.
- (4) 3회 동안 (3)의 Test가 실행된 후 TEST 메뉴화면으로 전환됩니다.

4.4.2 CONTACT TEST

SETTING/TEST/CONTACT TEST에서는 계전기의 출력접점 10개를 시험하는 메뉴입니다.

Test 화면전환 시 현재 출력접점 상태를 모두 유지하여 표시됩니다.

- 출력접점 Test 방법
- (1) TEST 메뉴화면에서 CONTACT TEST를 찾은 후 RIGHT() Key를 누르면 출력접점 Test 화면이 나옵니다.
- (2) Test하고자 하는 출력접점을 UP(_), DOWN(_) Key를 이용하여 선택한 후 RIGHT(_) Key를 누릅니다.
- (3) Password를 물을 경우 LEFT(
), RIGHT(
) Key를 이용하여 각 자리별로 이동하면서 UP(
), DOWN(
) Key를 이용하여 Password를 입력한 후
 ENT(ENTER) Key를 누릅니다.

- (4) 올바른 Password를 입력한 후, RIGHT(●) Key를 누르면 현재의 접점 상태
 "DnE", "Ene"가 문구가 점멸합니다.
- (5) UP(), DOWN() Key를 누를 때마다 접점의 상태가 "Ene"와 "DnE"로 토글하고 RELAY가 붙거나 떨어지는 소리가 납니다.
- (6) LEFT() Key를 누르면 선택한 출력접점의 Test 기능에서 빠져 나오게 되며 접점의 상태는 마지막 시험 상태로 유지됩니다.
- (7) 또 다른 출력접점의 Test를 원할 경우 (2) ~ (6)을 반복합니다.
- (8) 재시험 시 Password 입력은 묻지 않으며 더 이상의 출력접점 Test를 원하지 않을 경우 LEFT() Key를 눌러 Test 화면을 벗어나면 됩니다. 이 화면을 벗어나면 원래 가지고 있던 접점 출력 상태로 복원됩니다.

5. PC Software (Setting Tool, Waveform KbCanes)

PC Software는 본 계전기(K-PAM F300)를 PC 혹은 노트북을 이용하여 편리하게 사용할 수 있도록 설계된 Application Software입니다. PC Software는 Setting Tool과 KbCanes로 구성되어 있습니다. Setting Tool은 계전기 설정, Event Data 확인 및 텍스트 파일 형식의 저장, 고장파형 (Waveform Data) 확인 및 Comtrade File 형식으로의 저장, 상전압 및 선간전압, Sequence 전압, 주파수, 주파수 입력 전압, 계전요소 동작 상태 및 계전기의 자기진 단 상태를 Monitoring 할 수 있는 기능을 가지고 있습니다. KbCanes은 계전기가 저장한 고장파형을 Setting Tool을 이용하여 Comtrade File 형식 으로 저장한 것을 Graphic 상태로 파형을 확인하고 분석할 수 있습니다. 계전기가 저장하고 있는 고장파형은 계전기에 입력된 전압이 계전기 내부에 있는 Analog Filter를 통과한 후 A/D Converter를 통해 Analog 신호가 Digital 신호로 변환 된 것을 저장하고 있습니다. 고장파형은 1Cycle 당 32Sampling된 것이며 KbCanes은 그 Digital 신호를 이용하여 파형을 Graphic 형태로 표현합니다.

KbCanes에서 계측하는 전압은 RMS값이며 15고조파까지 계측을 합니다.

5.1 Setting Tool (KB-IED Manager)

K-PAM F300 본체 자체의 메뉴에서 각종 정정치 및 시스템 구성과 관련된 설 정을 하는 것과 마찬가지로 본 KB-IED Manager을 사용하여 원방에서 PC 혹은 노트북을 이용하여 일괄적으로 설정을 변경할 수 있습니다. RS-232C 통신뿐만이 아니라 RS-485C 통신에서도 Setting Tool을 이용할 수 있으 며 RS-485C 통신을 이용할 경우 프로토콜을 ModBus로 사용하시면 됩니다. 계전기에서 설정을 변경할 경우 각 항목별로 정정 작업을 반복하여야 하나 Setting Tool을 사용할 경우 일괄적으로 정정을 할 수 있고, 작업내용을 파일로 저장할 수 있어 동일 작업수행 시 정정을 편리하게 할 수 있습니다.

5.1.1 PC Tool 프로그램 설치 방법

PC Tool 프로그램을 설치하기 위해서는 제품 구입 시 함께 제공하는 Digital 계전기 Manual CD를 이용하시면 됩니다.

Manual CD를 컴퓨터 CD-ROM에 넣으시면 당사에서 판매되고 있는 Digital 계전 기의 모델명으로 구성된 폴더가 나타납니다.

그 중 K-PAM F300 폴더를 선택하시면 K-PAM F300 PC Program (V1.0.0.1)이라는 폴더가 있으며 그 폴더 안에 K-PAM F300 Setup.exe 파일이 있습니다.

그 설치 파일을 더블클릭하시고 프로그램을 설치하시면 됩니다.

설치가 완료된 후 Setting Tool Program을 실행하시려면 컴퓨터의 바탕화면에서

KB-IED Manager.exe 파일을 더블클릭하시면 됩니다. KB-IED Manager을 실행하면 아래와 같은 화면이 나타납니다.

<그림 18. Setting Tool 초기화면>

5.1.2 Setting Tool 프로그램 메뉴

KB-IED Manager의 기본메뉴는 크게 보호요소 설정, 시스템관련 설정, 기록, Monitoring으로 구분되어 있습니다. 또한 기타 Setting Tool 운영에 필요한 단축 아이콘으로 표시된 기능으로 구분되어 있는데, 단축 아이콘에 대한 자세한 내용 은 다음의 표를 참고하시기 바랍니다.

• Program Menu	
📔 Open	저장한 Setting 파일을 로드 합니다.
🛃 Save	보호요소 및 시스템 설정에 대한 설정내용을 저장합니다.
🔅 Comm. port	컴퓨터의 통신포트를 설정할 수 있는 메뉴입니다. ▶ 5.1.3 통신포트 설정 참조
🤴 Connect	계전기와 KB-IED Manager의 통신을 연결합니다.
🐞 Disconnect	계전기와 KB-IED Manager의 통신연결을 닫습니다.
✤ Device → PC	계전기의 System, Protection 설정내용을 KB-IED Manager로 일괄 Upload하며, Event 또는 Waveform 페이지에서는 해당 Data를 Upload 합니다.

♣ PC -> Device	System, Protection의 현재 페이지에서의 설정 변경 내용을 계전기로 전송합니다.
♦ PC -> Device	System, Protection의 설정 변경 전체 내용을 계전기로 전송합니다.
고객지원	계전기 관련 문의를 할 수 있도록 회사 홈페이지와 이메일 주소를 알 수 있는 메뉴입니다.

<표 17. Setting Tool Program Menus>

5.1.3 통신포트 설정 (Serial Port Configuration)

이 기능은 다른 장치에 의해 통신포트를 사용할 수 없을 경우 다른 Com-Port를 선택할 수 있는 것이며, 통신포트는 15개의 포트중 하나를 선택하여 사용할 수 있습니다. 또한 RS-232C 통신 프로토콜이 ModBus를 사용하므로, RS-485 통신으 로 Setting Tool을 사용할 수 있습니다.

만약 RS-485 통신으로 Setting Tool을 이용하고자 한다면 먼저 계전기의 Address 를 설정하고, 노트북의 RS-232C Connector에 RS-485C Convertor를 연결하고 계전 기의 RS-485단자(49, 51, 53번)에 연결하면 됩니다.

	Comm. Se	at 👘	
Port	COM7	-	
Address	1		1 ~ 254

<그림 19. Serial Port Configuration>

• Communication			
Dort	COM1 ~ COM15		
Polt	Communication Port		
ADDR	1~254 RS-485C 통신 시 사용		
ADDK	RS-485C를 위한 Slave Address (ModBus Protocol)		

5.1.4 Setting Tool 프로그램과 계전기와의 통신 방법

KB-IED Manager 프로그램을 이용하여 계전기를 정정하시려면 아래 절차대로 행하시면 됩니다.

※ PC 혹은 노트북에 RS-232C 통신포트가 있는 경우

1) 당사에서 제공한 RS-232C Cable의 Female 단자를 PC 혹은 노트북의 RS-232C 통신포트에 연결

2) RS-232C Cable의 Male 단자를 계전기의 RS-232C 통신포트에 연결

- 3) 계전기의 제어전원단자(21번, 23번) AC/DC 110~220V 전원 투입
- 4) KB-IED Manager의 File 메뉴에서 Connect(👹)를 선택

※ PC 혹은 노트북에 RS-232C 통신포트가 없는 경우

USB To RS-232C Cable을 구입하여 USB 포트에 USB To RS-232C Cable 연결
 USB To RS-232C Cable 구입 시 들어있는 설치 CD를 이용하여 컴퓨터에 Cable의 Driver를 설치

- 3) 컴퓨터 바탕화면에 있는 내 컴퓨터 아이콘에서 마우스의 오른쪽 버튼을 클릭
- 한 후 나타나는 메뉴 중 <mark>속성</mark>을 선택
- 4) 시스템 등록정보에서 하드웨어 메뉴를 선택하고 장치관리자를 클릭
- 5) 장치관리자에서 포트(COM 및 LPT)를 선택하여 컴퓨터에서 인식한 COM 포트 번호 확인

6) KB-IED Manager의 File 메뉴에서 Comm.port(🎲)을 선택한 후 Port설정에 컴퓨 터에서 인식한 COM 번호를 선택하고 "확인" 버튼을 클릭

7) 당사에서 제공한 RS-232C Cable의 Female 단자를 USB To RS-232C Cable의 통신포트에 연결

8) 당사에서 제공한 RS-232C Cable의 Male 단자를 계전기의 RS-232C 통신포트에 연결

- 9) 계전기의 제어전원단자(21번, 23번) AC/DC 110~220V 전원 투입
- 10) KB-IED Manager의 File 메뉴에서 Connect(📦)를 선택

5.1.5 정정치 변경 화면

KB-IED Manager Menu의 Protection과 System Config 항목이 계전기의 Protection 과 System 구성을 설정할 수 있는 메뉴입니다.

5.1.5.1 System Config

System 설정 화면에서는 계전기의 CB Control, RTC, T/S Output, 고장파형, 전 력시스템 등 일반적인 시스템 항목에 대한 내용을 설정하거나 확인할 수 있습니 다.

Device -> PC ()를 누르면 계전기에 저장되어 있는 System 구성과 Protection 설정 내용을 확인할 수 있으며, Setting 화면에서 내용을 수정한 다음 PC -> Device (Current Page) ()를 누르면 변경된 현재 화면의 설정이 저장되며, PC -> Device (Whole Page) ()을 누르면 계전기에 변경된 설정 전체가 저장이 됩 니다. 또한 Save()을 누르면 현재 Setting 화면에 있는 내용을 (*.mrt) 파일로 저 장할 수 있으며, Open()을 누르면 저장된 File(*.mrt)을 Load 할 수 있습니다. 각 항목에 대한 설명은 계전기의 메뉴 구성 화면과 동일하므로 "4. 계전기 정정 관련설명 (Setting Description)" 부분을 참조하시기 바랍니다.

<그림 22. System Config>

5.1.5.2 Protection Setting

Protection 설정 화면에서는 계전기의 보호계전 요소와 관련된 항목들을 설정합니다.

설정 항목은 OCR (과전류), OCGR (지락과전류), SGR(선택지락), OVR(과전압), UVR(저전압), OVGR(지락과전압), NSOVR(역상과전압) 등으로 구성되어 있습니다.

각 보호 요소의 설명은 계전기 메뉴 구성화면과 동일하므로 "4. 계전기 정정관련 설명 (Setting Description)" 부분을 참조하시기 바랍니다.

<그림 23. Protection Setting>

5.1.6 Event 화면

KB-IED Manager 메뉴의 Record / Event 항목을 누르면 Event Data를 확인할 수 있는 화면이 나타납니다. Event 화면에서는 계전기에 저장된 Event Data를 확인, Text 파일 형식으로 저장할 수 있으며 계전기에 저장된 Event Data를 삭제할 수 있습니다.

Event 항목에서 Device -> PC () ●)를 누르면 계전기의 비휘발성 메모리 (FlashROM)에 저장되어 있는 Event Data를 가져와서 화면에 표시하고, 이 상태에 서 "Event Save" 버튼을 누르면 Event Data를 *.txt 파일로 저장합니다. Event Data 표시에서 숫자가 작은 것일수록 최근의 Event Data이며, "Clear"를

버튼을 누르면 계전기에 저장되어 있는 Event Data를 삭제합니다.

Event 내용은 계전기의 메뉴 구성 화면과 동일하므로 "3.4.3.1 RECORD ▶ EVENT"을 참조하시기 바랍니다.

🌾 KB-IED Manager - [K-PAM F300	0-2]	- 5
🕑 Elle View Comm Help		_ & ×
📷 🖬 🐵 🕸 🔹 🔹 👘 🛛		
K-PAM F300-2	10 B	4 Þ 🗙
K-PAM F300 Menu		
😑 🌃 K-PAM F300	X Clear 💦 Event Save	
🗟 🏤 Protection	Num Time Event	
- 9 OCR()	1 2009/02/24/09:05:08:04 CB Status-CLOSE	
- ··· OCGR()	2 2009/02/24/09:05:08:04 System Reset-Power ON	
- "9 SGR()	3 2009/02/16/14:18:11.77 System Reset-Power OFF	
- VH()	4 2009/02/16/14:17:18:69 CB Status-CLOSE	
UVR()	5 2009/02/16/14:17:18:69 Setting Change-CB Control	
	6 2009/02/16/14:16:58.72 CB Status-OPEN	
NSUVH()	7 2009/02/16/14:16:58:72 Setting Change-CB Control	
Bauer System Coning,	8 2009/02/16/14:16:39.45 CB Status-Trouble	
CR Control	9 2009/02/16/14:16:39:45 Setting Change-CB Control	
Trip/Signal	10 2009/02/16/14/0318.84 CB Status-Disable	
Sustem Time	11 2009/02/16/14/03/18.84 System Reset-Power ON	
Waveform Becord	12 2009/02/16/14.01;95.08 System Heset-Power UFF	
	13 2009/02/16/14/01:24.18 LB Status-Disable	
B M Becord	14 2009/02/16/14/01/24.18 Setting Change CB Control	
	13 2009/02/16/14:00:00.23 LD 51809/07EN	E
WaveForm	16 2005/02/16/14:00:50:25 Seturg Crange-C5 Control 17 2009/02/16/14:00:50:25 Seturg Crange-C5 Control	
😑 🔩 Monitoring	17 2003/02/10/14:00.9429 Context Reset Prover DN	
Measurement	19 2009/07/07/14/04/92/35 System Beset Over ON	
Status(DI)	20 2009/02/16/14/00:27.54 Event Clear	
10000000000000000000000000000000000000		
		*
Heady	K-PAM F300 Port Open 2009-02-24 09:20:	by Kyongdo Electric Inc.

<그림 24. Event>

5.1.7 Waveform 화면

KB-IED Manager 메뉴의 Record / WaveForm 항목을 누르면 고장파형(Waveform Data)을 확인할 수 있는 화면이 나타납니다. Waveform 화면은 계전기에 저장된 고장 기록의 정보를 표시하고, 원하는 고장 기록 Data를 Comtrade File 형식으로 변환 저장할 수 있으며 저장된 기록을 삭제할 수 있습니다.

Device -> PC ()를 누르면 계전기에 저장되어 있는 고장파형(Waveform Data) 에 대한 정보가 표시되며, 원하는 정보의 "Save"를 누르면 고장파형을 PC로 Comtrade File 형식으로 변환하여 저장합니다.

Comtrade 파일은 *.cfg 파일과 *.dat 파일로 구성되는데, 이 두 가지 파일은 확장 자만 다르고 같은 파일명으로 저장됩니다. 이 두 개의 파일은 고장파형 분석 프로그램 (KbCans)에서 이용됩니다.

Waveform Data 표시에서 숫자가 작은 것일수록 가장 최근의 사고 기록이며, "Clear"를 누르면 계전기에 저장되어 있는 사고 기록을 삭제합니다.

<그림 25. WaveForm>

5.1.8 Measurement 화면

KB-IED Manager 메뉴의 Monitoring / Measurement 항목을 누르면 계전기의 Measurement를 확인할 수 있는 화면이 나타납니다

Monitoring / Measurement 항목은 계전기에 입력되는 상전압의 크기 및 위상, 선간전압의 크기 및 위상, 전류의 크기 및 위상, 영상전류의 크기 및 위상, 역률, 대칭분(정상, 역상, 영상) 전압의 크기 및 위상, 대칭분(정상, 역상, 영상) 전류의 크기 및 위상, 유효전력, 무효전력, 피상전력, 유효전력량, 무효전력량, 주파수, CB OPEN 횟수를 실시간으로 표시합니다.

또한, Monitoring / Measurement 항목에서 계전기에 입력되는 3상 전압, 전류를 보 다 쉽게 확인할 수 있도록 Measurement 항목 상단에 "Vector"를 누르면 Graph로 전압, 전류을 표시하며, "Energy Clear"를 누르면 계전기에 저장되어 있는 유효 전력량과 무효전력량의 기록을 삭제합니다.

<그림 26. K-PAM F300 Measurement>

5.1.9 Status(DI) 화면

KB-IED Manager 메뉴의 Monitoring / Status(DI) 항목을 누르면 계전기의 상태 를 확인할 수 있는 화면이 나타납니다

Monitoring / Status(DI) 항목은 계전기의 자기진단 상태, 보호요소 동작상태, 입출력 접점 상태 등을 실시간으로 표시합니다.

계전기 Setting시 System / T/S output / CON 항목을 SYS_ERR로 설정한 경우 자기진단 상태가 정상일 때 접점의 동작상태를 적색으로 표시합니다.

<그림 27. K-PAM F300 Status(DI)>

5.2 Waveform 분석 프로그램 (KbCanes)

KbCanes는 KB-IED Manager 프로그램에서 Record / WaveForm 항목의 SAVE를 통해서 생성한 Comtrade File로 저장된 고장파형 Data를 그래픽 형태로 볼 수 있 는 프로그램입니다.

KB-IED Manager와 KbCanes를 이용하여 고장파형 Data와 Event Data의 기록 등을 확인 할 경우 고장 원인과 고장의 진행 상황 등을 좀더 쉽고 정확하게 분석할 수 잇도록 도와줍니다.

KbCanes에서 Comtrade File을 분석할 경우에는 Open())을 눌러 원하는 Comtrade File 선택 후 "열기" 버튼을 누르시면 됩니다.

KbCanes에서는 전압/전류의 크기 및 위상, 순시치, 왜형율, 각 보호요소 동작 상 태, 입출력 접점의 상태, 고장시간 등을 표시합니다.

• 출력 파형		
전압 계측	실효치 및 위상, 순시치	
전류 계측	실효치 및 위상, 순시치	
고조파 함유율	선택 지점의 고조파 함유율 계산(기본파~15조파)	
각 계전요소의 Pickup 및 Operation, T/S Output, CB입력상태		

<그림 28. KbCanes>

5.2.1 기능 설명

• Program Menu			
🛅 Open	계전기의 Waveform Data Comtrade(*.dat) File을 엽니다.		
🔚 Save	현재의 화면구성 및 그래프의 표현 상태를 저장합니다.		
실 Print	그래프를 인쇄합니다.		
[Print Preview	인쇄할 내용을 미리 보여줍니다.		
😥 Zoom In	파형을 확대하여 보여줍니다.		
Zoom Out	파형을 축소하여 보여줍니다.		
🔛 Fit on screen	파형을 한 화면에 전부 보여줍니다.		
One Signal Group per Diagram	아날로그 신호를 분리 혹은 합하여 보여줍니다.		
Analog Digital Data View	기본화면구성에서 Analog Digital Value를 삭제한 경우 다시 Analog Digital Value를 표현해 줍니다.		
👹 Harmonic List	전압, 전류의 고조파(1~15조파)를 계산하여 사용자에게 보여줍니다.		
Sector	선택된 지점의 벡터그래프를 보여줍니다.		
🐹 Close All View	아날로그, 디지털 신호 그래프 표현을 제외한 모든 화면구성을 제거합니다.		
🥘 About	메일주소 및 홈페이지 주소를 보여줍니다.		

<표 18. KbCanes Menus>

5.2.2 Analog Digital Value

KbCanes은 Comtrade File로 저장된 입력전압 파형의 전압/전류의 크기 및 위상, 순시치, 왜형율, 각 보호요소 동작 상태, 입출력 접점의 상태를 표시합니다. 원하는 지점의 크기나 상태를 보시려면 원하는 지점에 마우스 포인터를 가져가 신 다음 마우스 왼쪽 버튼을 누르시면 하늘색 실선(┃)이 그려지면서 그 지점의 계측값, 접점의 상태, 시간(Trig-C1)을 표시합니다.

오른쪽 마우스 버튼을 누르시면 보라색 실선()이 나타나며 보라색 실선에 대한 시간(Trig-C2)과 두 실선 사이의 시간 차이(|C1-C2|)를 표시합니다.

5.2.3 Select

Comtrade에 저장된 Analog, Digital 파형에서 사용자가 원하는 파형을 선택적으 로 볼 수 있는 기능으로 Analog Digital Value의 Group ID, Channel ID에서 왼쪽 마우스 버튼을 이용해서 선택 (♥) / 해제(下)를 할 수 있습니다.
"Pri/Sec"라는 항목은 고장 파형을 PT 1차측 혹은 PT 2차측으로 계측값을 확인 할 수 있는 기능으로 Primary Value로 설정하면 계측값을 1차측으로 표시하며, Second Value로 설정하면 2차측으로 표시합니다.

eu)a	ec pecond vall	sample			
Prim	ary Value				
Dec	Group ID	Channel ID			
1		Va(b)			
2	-	Vb(c)			
3	Voltage	Vc(a)			
4	1	Vn			
5	🔽 Current	🔽 la			
6		Гю			
7		IC IC			
8	-	🔽 In			
9	3	TOCRPICKL			
10	3	TOCRPICKL			
11		TOCRPICKL			
12	3	IOCRPICKU			
13		✓ IOCRPICKU			
14	2	IOCRPICKU			
15		TOCGRPICK			
16	2	✓ IOCGRPICK			
17		CORPICKUE			

<그림 29. KbCanes Select>

5.2.4 Harmonic List

파형에서 사용자가 원하는 위치에 마우스 왼쪽버튼을 누르면 하늘색 실선() 이 그려지며 실선이 지시하는 지점의 전압의 고조파(1~15조파)를 계산하여 사용자 에게 보여줍니다.

	Group ID	Channel ID	1 et	2nd	3rd	4th	5th	Eth	7th	8th	9th	10th	11th	12th	13th	14th	15th	
1 1	/oltage	Valbi	100.00	0.05	0.13	0.02	0.06	0.01	0.03	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.01	- 17
2	10000400		100.00	0.04	0.13	0.02	0.06	0.00	0.03	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
3		Vc(a)	100.00	0.03	0.12	0.02	0.06	0.00	0.03	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.00	
4		Vn	100.00	0.05	0.13	0.02	0.06	0.01	0.03	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	
5 0	Current	la	100.00	0.16	0.06	0.18	0.09	0,33	0.20	0.24	0.18	0.07	0.26	0.21	0.19	0,19	0.10	
6		4b	100.00	0.35	0.09	0.20	0.12	0,34	0.10	0.11	0.24	0.15	0.20	0.03	0.18	0.21	0.14	
7		le	100.00	0.10	0.20	0.28	0.24	0.12	0.15	0.05	0.29	0.20	0.11	0.28	0.09	0.14	0.19	
8		In	100.00	0.08	0.32	0.12	0.15	0.19	0.09	0.20	0.15	0.05	0.27	0.23	0.09	0.14	0.07	-

<그림 30. KbCanes Harmonic List>

6. 설치 및 결선

6.1 치수도 (Dimensioned Drawings) Unit : mm

6.2 후면 단자 배치도

1	TS1_NO	2	TS1_COM	31	IA+	32	IA-
3	TS2_NO	4	TS2_COM	33	IB+	34	IB-
5	TS3_NO	6	TS3_COM	35	IC+	36	IC-
7	TS4_NO	8	TS5_NO	37	IN+	38	IN-
9	TS6_NO	10	TS4~6_COM	39	VA+	40	VA-
11	TS7_NO	12	TS8_NO	41	VB+	42	VB-
13	TS9_NO	14	TS7~9_COM	43	VC+	44	VC-
15	TS10_NC	16	TS10_COM	45	VN+	46	VN-
17	52a 입력+	18	52a 입력-	47	IS+	48	IS-
19	52b 입력+	20	52b 입력-	49	-	50	-
21	PWR+	22	FG	51	RS485_DATA+	52	RS485_DATA-
23	PWR-	24	CHASSIS	53	RS485 COM	54	FG

< #	19	K-PAM	F300	다자	배치도>
~11	1).		1 300	근지	비 시 ㅗ ╯

6.3 외부 결선도(External Connection)

6.3.1 K-PAM F300 외부 결선도

<그림 32. 3상 3선식 V결선 - ABC Rotation>

<그림 75. 3상 3선식 3PT결선 - ABC Rotation>

<그림 33. 3상 4선식 3PT결선 - ABC Rotation>

<그림 75. GPT결선>

6.3.3 K-PAM F300 CT 결선

<그림 34.3상 3선식 2CT결선 - ABC Rotation>

<그림 35. 3상 3선식 3CT결선 - ABC Rotation>

<그림 36. 3상 4선식 3CT 잔류회로 결선 - ABC Rotation>

<그림 37. 3상 4선식 4CT 결선 - ABC Rotation>

<그림 38. ZCT 결선>

6.3.4 입력 / 출력 접점 결선

<그림 39. 입력/출력 접점 결선>

6.3.5 RS-232C 통신 포트 결선

<그림 40. RS-232C 통신 포트 결선도>

6.3.6 RS-485C 통신 포트 결선

<그림 41. RS-485C 통신 포트 결선도>

6.4 모듈의 분리 및 교체

반드시 제어전원이 꺼진 상태에서 모듈의 설치 및 제거를 해야합니다. 만약 제어전원이 꺼지지 않은 상태에서 모듈 을 설치 및 제거할 경우 설치자가 전기적인 상해를 입거 나 모듈의 손상, 보호제어 유니트의 오동작이 발생할 수 있습니다.

6.4.1 모듈의 분리

전면표시부 아래에 있는 인출 핸들을 잡고 위로 올리면 외함과 접속단자를 제외한 보호제어 유니트가 통째로 빠지게 되어 있습니다. 그리고 보호제어 유니트를 인출한 후에 후면부의 상하나사를 풀고 잡아당기면

CT/PT 모듈과 DO 모듈이 분리됩니다.

기타 모듈은 인출 후 고정나사를 풀면 분리됩니다.

6.4.2 모듈의 교체

분리된 후의 각 모듈은 보드 단위의 교체가 가능합니다. CT/PT 모듈과 DO 모듈모듈은 단자대를 고정시킨 후 가이드레일을 따라 밀어 넣 으면 설치되는데, 이때 반드시 컨넥터가 완전히 연결되었는지 확인해야 합니다. 기타 모듈은 보드 교체 후 고정나사를 조여 설치하면 됩니다.

부도 1. 특성 곡선(Characteristic Curve)

OCR-NI

500

Digital Feeder Protection Multi Function Relay (K-PAM F300) Manual (V1.00)

<부도 1.3 과전류/지락과전류 LI 특성 곡선>

<부도 1.4 과전류/지락과전류 EI 특성 곡선>

<부도 1.5 과전류/지락과전류 KNI 특성 곡선>

89 / 101

<부도 1.7 과전류/지락과전류 KLNI 특성 곡선>

90 /

<부도 1.8 과전류/지락과전류 KLVI 특성 곡선>

<부도 1.10 과전압 반한시 특성 곡선>

<부도 1.11 저전압 역반한시 특성 곡선>

95 / 101

<부도 1.13 지락 과전압 ALARM용 반한시 특성 곡선>

부록	A.	제품	출하	Ы	Setting	값
----	----	----	----	---	---------	---

				1.Function	ENABLE
				2.Curve	KVI
			1.TOCR	3.PickUp	10 [A]
				4.T_Dial	1
				5.DT_Time	0.04 [sec]
				1.Function	ENABLE
			21000	2.Curve	DT
			2.10CK	3.PickUp	50 [A]
				4.DT_Time	0.04 [sec]
				1.Fucntion	ENABLE
				2.Curve	KVI
				3.Direction	DISABLE
초			2 TOCCD	4.In_PKP	0.5 [A]
			3.10CGK	5.T_Dial	1
				6.DT_Time	0.04 [sec]
기		1. D. (. (.		7.Vn_PKP	15 [V]
				8.MTA	-60 [°]
				1.Function	ENABLE
	Setting			2.Curve	DT
	Mode	Protection		3.Direction	DISABLE
화			4.IOCGR	4.In_PKP	20 [A]
				5.DT_Time	0.04 [sec]
				6.Vn_PKP	15 [V]
면				7.MTA	-60 [°]
				1.Function	ENABLE
				2.Curve	DT
				3.Direction	FORWARD
			5 SCD	4.Is_PKP	1 [mA]
			5.5GK	5.T_Dial	1
				6.DT_Time	10 [sec]
				7.Vn_PKP	20 [V]
				8.MTA	45 [°]
				1.Function	ENABLE
				2.Curve	DT
			6.OVR	3.Pickup	125 [V]
				4.T_Dial	1
				5.DT_Time	0.05 [sec]

				1.Function	ENABLE
			7.UVR	2.Curve	DT
				3.Pickup	90 [V]
				4.T_Dial	1
				5.DT_Time	0.20 [sec]
				1.Function	ENABLE
				2.Curve	TRIP_NI
			8.TOVGR	3.Pickup	70 [V]
		1.		4.T_Dial	1
		Protection		5.DT_Time	0.04 [sec]
초				1.Function	ENABLE
				2.Curve	DT
ור			9.IOVGR	3.Pickup	125 [V]
7				4.T_Dial	1
				5.DT_Time	0.04 [sec]
	Setting		10.NSOVR	1.Function	ENABLE
	Widde			2.Pickup	15 [V]
화				3.DT_Time	1.00 [sec]
				1.FREQ	60Hz
면				2.PT_CON	Wye
				3.P_PT_SEC	110.0 V
			1.Power	4.P_PT_RAT	1.0
			System	5.G_PT_SEC	190.0 V
				6.G_PT_RAT	1.0
		2. System		7.P_CT_RAT	5
				8.G_CT_RAT	5
				1.Function	ENABLE
				2.Key Control	ENABLE
			2.CB	3.CB OPEN Time	0.5 Sec
				4.CB CLOSE Time	1.0 Sec
				5.CB Input	52a+52b

					1.CON	CB OPEN
				T/S 1	2.RST	SELF
					3.DLY	0
					1.CON	CB CLOSE
				T/S 2	2.RST	SELF
					3.DLY	0
					1.CON	ALL PROT
				T/S 3	2.RST	SELF
					3.DLY	0
					1.CON	OCR
				T/S 4	2.RST	SELF
					3.DLY	0
					1.CON	OCGR+SGR
초				T/S 5	2.RST	SELF
			2.T/S Output		3.DLY	0
				T/S 6	1.CON	OVR
フ		2. SYSTEM			2.RST	SELF
					3.DLY	0
	a			T/S 7	1.CON	UVR
	Setting				2.RST	SELF
	Mode				3.DLY	0
하					1.CON	OVGR
				T/S 8	2.RST	SELF
					3.DLY	0
ы					1.CON	NSOVR
연				T/S 9	2.RST	SELF
					3.DLY	0
					1.CON	SYS ERR
				T/S 10	2.RST	SELF
					3.DLY	0
			4 Waveform	1.T_POS		50%
			Record	2.T_SRC		OP
				3.In/Is		In
			5 Communi-	1.Protocol		Modbus
			cation	2.SLAVE	ADDR	1
				3.BPS		19200
			6.Password			0000
		3.Record Clear	4.Set CB OPI	EN CNT		0

부록 B. 제품 출하 시 Setting 값에 따른 외부 결선도

<주의 사항>

- 1. 위 결선도는 제품 출하값에 따른 설정이므로 사용자가 임의로 변경 가능합니다.
- 2. SYS_ERR접점은 보조전원을 인가한 상태에서 계전기에 이상이 없을 때의 상태입니다.

경보전기 주식회사(KyongBo Co., Ltd)

(영업부) 주소: 전화: 팩스:	서울특별시 성동구 성수2가3동 02) 465-1133 (내선번호 100번) 02) 465-1333	284-5번지
(연구소) 주소: 전화: 팩스:	서울특별시 성동구 성수2가3동 02) 465-1133 (내선번호 126번) 02) 465-1333	284-5번지
(A/S부서)		

주소:	서울특별시 성동구 성수2가3동 284-5번지
전화:	02) 465-1138 (내선번호 129번)
팩스:	02) 465-1333

홈페이지: <u>http://www.kyongbo.co.kr/</u>